Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.069
Publication date: 18th December 2023
The unproven durability of perovskite photovoltaics (PVs) is likely to pose a significant technical hurdle in the path towards the widespread deployment of this burgeoning thin-film PV technology. The overall durability of perovskite PVs, which includes operational stability, is directly affected by the mechanical reliability of metal-halide perovskite materials, cells, and modules, but this issue has been largely overlooked. Thus, there is a sense of urgency for addressing the mechanical reliability issue comprehensively, and help perovskite PVs reach their full potential. This presents many challenges, but it also offers vast research opportunities for making meaningful progress towards more durable perovskite PVs. Here I will highlight the important challenges and opportunities, together with best practices, pertaining to the three key interrelated elements that determine the mechanical reliability of perovskite PVs: (i) driving stresses, (ii) mechanical properties, and (iii) mechanical failure. I will also present examples of approaches to mitigate failure and extend the durability of perovskite PVs.