Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.052
Publication date: 18th December 2023
Organic semiconductors are gaining prominence as promising materials for heterogeneous photocatalytic (PC) solar fuel production due to their molecular tunability and scalable processability. Notably, bulk heterojunction (BHJ) nanoparticles (NPs), synthesized through a mini-emulsion approach, have proven to be high-performance and cost-effective photocatalysts for solar hydrogen production under sacrificial conditions. Despite their success, the factors crucial for optimizing the performance of these BHJ NPs remain poorly understood. This presentation delves into the intricacies of BHJ-based systems, drawing insights from photoelectrochemical measurements and model photocatalysts. It highlights the significance of co-catalyst loading and particle formation methods, unraveling their impact on the stability and overall water-splitting ability of BHJ NPs. In particular, the importance of controlling the nucleation and growth of the Pt co-catalyst on the BHJ surface is highlighted. By elucidating this critical factor and others, the presentation paves the way for a more comprehensive understanding of BHJ-based NP systems, aiming to enhance their efficiency and durability in the realm of solar fuel production.