Ultrafast self-localisation of charge carriers in next-generation bismuth halide and chalcogenide semiconductors
Laura Herz a, Marcello Righetto a
a Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
#NextGenSolar - Innovations beyond ABX3 perovskites: Materials development, Photophysics, and Devices
Barcelona, Spain, 2024 March 4th - 8th
Organizers: Silvia Motti and Marcello Righetto
Invited Speaker, Marcello Righetto, presentation 031
DOI: https://doi.org/10.29363/nanoge.matsus.2024.031
Publication date: 18th December 2023

Metal halide semiconductors have emerged as attractive materials for solar cells with power-conversion efficiencies now exceeding 26%, however, these record efficiencies have all relied on incorporation of lead as the metal. The search for less toxic ingredients has led to the emergence of a plethora of new bismuth-based semiconductors, including bismuth halides and chalcogenides. Power conversion efficiencies around 6% have been realised for such materials, triggering new research efforts to explore and eliminate current limitations to performance.

Here, we show that an ultrafast charge-carrier self-trapping process limits long-range charge-carrier transport in most bismuth-based semiconductors.[1-7] We have examined the evolution of photoexcited charge carriers in the double perovskite Cs2AgBiBr6 using a combination of temperature-dependent photoluminescence, absorption and optical pump−terahertz probe spectroscopy.[1] We observe rapid decays in terahertz photoconductivity transients that reveal an ultrafast, barrier-free localization of free carriers on the time scale of 1.0 ps to an intrinsic self-trapped small polaronic state. Alloying Cs2AgBiBr6 with Cs2AgSbBr6 on the trivalent metal site interestingly leads to significantly stronger self-localisation,[2] which we attribute to self-localised charge carriers probing the energetic landscape more locally thus turning an alloy’s low-energy sites (here, Sb sites) into traps, which dramatically deteriorates transport properties. We further demonstrate the novel lead-free semiconductor Cu2AgBiI6 which exhibits a low exciton binding energy of ~29 meV and a lower and direct band gap near 2.1 eV,[3,4] making it a significantly more attractive lead-free material for photovoltaic applications. However, charge carriers in Cu2AgBiI6 are found to exhibit similarly strong charge-lattice interactions[4,5]. Further work examining five compositions along the AgBiI4–CuI solid solution line (stoichiometry Cu4x(AgBi)1−xI4) shows that increased Cu+ content enhances the band curvature around the valence band maximum, resulting in lower charge-carrier effective masses, reduced exciton binding energies, and higher mobilities, as well as partly mitigating the extent of such ultrafast self-localisation.[5] Interestingly, we show that thin films of BiOI lack of such self-trapping, with good charge-carrier mobility maintained over longer time scales, reaching ∼3 cm2 V–1 s–1 at 295 K and increasing gradually to ∼13 cm2 V–1 s–1 at 5 K, indicative of prevailing bandlike transport.[6] Finally, we examine thin films of AgBiS2 nanocrystals as a function of Ag and Bi cation-ordering,[7] which is modified via thermal-annealing. We show that homogeneous cation disorder reduces charge-carrier localization, most likely because cation-disorder engineering flattens the disordered electronic landscape, removing tail states that would otherwise exacerbate Anderson localization of small polaronic states.[7]

Overall, self-trapping of charge carriers therefore emerges as a clear challenge for this class of materials. Our findings explore the parameter space governing such self-localization, highlighting the effects of local energetic disorder as an exacerbating factor that may pose new challenges to alloying strategies. In addition, or findings show that cation-disorder engineering may partly mitigate such effects through flattening of the local energy landscape.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info