Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.014
Publication date: 18th December 2023
Dopant emission in colloidal ZnX nanoplatelets
Ultrathin, atomically flat, two-dimensional semiconductor nanocrystals receive a rapidly increasing attention due to their unique physicochemical properties. I will show that ZnS and ZnSe nanoplatelets with low toxicity exhibit sharp excitonic absorption and narrow excitonic emission. Further, I will demonstrate that direct manganese doping leads to tunable emission and photoluminescence lifetime. The initially low dopant PL quantum yield can be dramatically enhanced by passivating the surface trap states of the samples. Using time-resolved PL spectroscopy and density functional theory calculations, a connection between (magnetic) coupling and PL kinetics of Mn ions can be established. Using a descriptive mathematical model, we recognized the dominant role of the Mn2+ nonradiative relaxation channels in the energy-transfer route from the matrix absorption to the luminescence of Mn2+ ions.
We believe that the presented doping strategy and simulation methodology of the Mn-doped ZnS system is a universal platform to study dopant location- and concentration-dependent properties also in other semiconductors and might be an interesting system for catalysis.