Proceedings of MATSUS23 & Sustainable Technology Forum València (STECH23) (MATSUS23)
Publication date: 22nd December 2022
The continuous research on electronics, biocompatible materials and nanomaterials has led to the design of a new generation of wearable devices that can be employed in direct contact with the body of the user, which is attractive for real-time, non-invasive health monitoring1. For the satisfaction of such requirements, hydrogel-based conductive devices are often proposed as promising candidates for these applications, thanks to their softness, flexibility, and biocompatibility.
Here we report the synthesis of conductive hybrid hydrogels containing two-dimensional (2D) MoS2. The nanoflakes are integrated in the polymeric matrix creating an anisotropic structure, which helps to generate mismatch stress for a strain sensing under a certain stimulus2, thus allowing the gel to give an electrical response to pressure. 2D MoS2 nanoflakes were produced via top-down chemical exfoliation3 and were incorporated in the hydrogel through a covalent grafting to the polymeric building blocks by exploiting the prior surface functionalization of the flakes4. The conductivity of the hydrogels was increased with the further incorporation of in-situ polyaniline (PANI), which is a widely used material in biomedical applications as a biocompatible conductive polymer5. The as-obtained hydrogels are characterized through a combination of techniques, whereas their electromechanical properties are investigated via a home-made setup to prove that compression causes an increase in current due to the piezoresistive properties introduced with the incorporation of 2D MoS2 and PANI.