Proceedings of MATSUS23 & Sustainable Technology Forum València (STECH23) (MATSUS23)
DOI: https://doi.org/10.29363/nanoge.matsus.2023.278
Publication date: 22nd December 2022
Cu-Ga-Se chalcopyrite structures with a band gap of 1.68 eV (CuGaSe2) to 1.85 eV (CuGa3Se5) are considered to be promising materials to be used as the photocathode in a tandem photoelectrochemical (PEC) water splitting configuration. Therefore, we prepared polycrystalline Cu-Ga-Se films with different compositions ranging from Cu-poor CuGaSe2 (Cu/Ga = 0.85) to extremely Cu-poor CuGa3Se5 (Cu/Ga = 0.33) and investigated the effect of the Cu/Ga ratio on the crystal structure, morphology and PEC performance of the films. Without any surface treatment or formation of a p-n junction, we report remarkable saturated photocurrent densities of -19.0 and -12.1 mA/cm2 (measured at -0.40 V vs. RHE) for our films with Cu/Ga = 0.85 and Cu/Ga = 0.33, respectively, using an LED-based solar simulator. These outstanding results cover 86% and 68% of the maximum theoretical photocurrents for materials with a band gap of 1.68 eV and 1.85 eV, respectively. Furthermore, we were able to obtain and validate a realistic equivalent circuit via potentiodynamic electrochemical impedance spectroscopy (P-EIS), which among others confirmed that the obtained difference in onset potential (270 mV) between these two films was in agreement with the obtained difference in flat-band potential (290 mV).