Proceedings of MATSUS23 & Sustainable Technology Forum València (STECH23) (MATSUS23)
DOI: https://doi.org/10.29363/nanoge.matsus.2023.014
Publication date: 22nd December 2022
Excited state dynamics play key roles in numerous molecular and nanoscale materials designed for energy conversion. Controlling these far-from-equilibrium processes and steering them in desired directions require understanding of material’s dynamical response on the nanometer scale and with fine time resolution. We couple real-time time-dependent density functional theory for the evolution of electrons with non-adiabatic molecular dynamics for atomic motions to model such non-equilibrium response in the time-domain and at the atomistic level. The talk will introduce the simulation methodology [1] and discuss several exciting applications among the broad variety of systems and processes studied in our group [2,3], including metal halide perovskites, transition metal dichalcogenides, semiconducting and metallic quantum dots, metallic and semiconducting films, polymers, molecular crystals, graphene, carbon nanotubes, etc. Photo-induced charge and energy transfer, plasmonic excitations, Auger-type processes, energy losses and charge recombination create many challenges due to qualitative differences between molecular and periodic, and organic and inorganic matter. Our simulations provide a unifying description of quantum dynamics on the nanoscale, characterize the timescales and branching ratios of competing processes, resolve debated issues, and generate theoretical guidelines for development of novel systems.