Proceedings of Online Meetup - Beyond Lead Halide Perovskites: Syntheses and Applications of Metal Halide Semiconductors (MABP)
Publication date: 23rd April 2020
The optical and light emission properties of tin and lead halide perovskites are remarkable because of the robust room temperature performance, broad wavelength tunability, high efficiency and good quenching-resistance to defects. These highly desirable attributes promise to transform current light emitting devices, phosphors and lasers. One disadvantage in most of these materials is the sensitivity to moisture. Here we report a new air-stable one-dimensional (1D) hybrid lead-free halide material (DAO)Sn2I6 (DAO: 1,8-octyldiammonium) that is resistant to water for more than 15h. The material exhibits a sharp optical absorption edge at 2.70 eV and a strong broad orange light emission centered at 634 nm, with a full width at half maximum (FWHM) of 142 nm (0.44 eV). The emission has a long photoluminescence (PL) lifetime of 582 ns, while the intensity is constant over a very broad temperature range (145-415 K) with a photoluminescence quantum yield (PLQY) of at least 20.3% at RT. Above 415 K the material undergoes a structural phase transition from monoclinic (C2/c) to orthorhombic (Ibam) accompanied by a red shift in the bandgap and a quench in the photoluminescence emission. Thin films of the compound readily fabricated from solutions exhibit the same optical properties, but with improved PLQY of 36%, for a 60 nm thick film, among the highest reported for lead-free low-dimensional 2D and 1D perovskites and metal halides.