Proceedings of Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics (IPEROP24)
DOI: https://doi.org/10.29363/nanoge.iperop.2024.026
Publication date: 18th October 2023
Halide perovskites are a new class of functional semiconductor materials from a viewpoint of condensed matter physics. Lead halide perovskites show very sharp absorption edges and extremely efficient luminescence of free carriers and excitons even at room temperatures. Intrinsic optical properties of perovskites can be studied at room temperature. Recent ultrafast optical spectroscopy studies of nonequilibrium photocarrier and exciton dynamics in halide perovskites have provided rich insights into semiconductor photophysics. We clarified the photocarrier dynamics and optical responses in a wide time range from a few femtoseconds to seconds [1-11]: (1) in femtoseconds, ballistic electron motion in the conduction band under laser electric fields and high-order harmonic generation, (2) in picoseconds, hot carrier relaxation and phonon bottleneck effects through strong electron-phonon couplings, and (3) in nanoseconds, radiative recombination of carriers, long-range carrier diffusion, and photon recycling. In addition, low-dimensional nanostructures such as quantum dots and atomically thin layers show the superior luminescence of excitons [12-16]. Biexcitons and trions determine picosecond luminescence and transport properties. In this talk, we discuss the photocarrier dynamics of halide perovskites and the exciton physics in perovskite nanostructures revealed by time-resolved optical spectroscopy.
[1] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, J. Am. Chem. Soc. 136, 11610 (2014).
[2] Y. Yamada, T. Yamada, L. Q. Phuong, N. Maruyama, H. Nishimura, A. Wakamiya, Y. Murata, and Y. Kanemitsu, J. Am. Chem. Soc. 137, 10456 (2015).
[3] T. Yamada, Y. Yamada, Y. Nakaike, A. Wakamiya, and Y. Kanemitsu, Phys. Rev. Applied 7, 014001 (2017).
[4] T. Yamada, T. Aharen, and Y. Kanemitsu, Phys. Rev. Lett. 120, 057404 (2018).
[5] K. Ohara, T. Yamada, H. Tahara, T. Aharen, H. Hirori, H. Suzuura, and Y. Kanemitsu, Phys. Rev. Materials 3, 111601(R) (2019).
[6] Y. Sanari, H. Hirori, T. Aharen, H. Tahara, Y. Shinohara, K. L. Ishikawa, T. Otobe, P. Xia, N. Ishii, J. Itatani, S. A. Sato, and Y. Kanemitsu, Phys. Rev. B 102, 041125(R) (2020).
[7] T. Yamada, Y. Yamada, and Y. Kanemitsu, J. Lumin. 220, 116987 (2020).
[8] K. Ohara, T. Yamada, T. Aharen, H. Tahara, H. Hirori, H. Suzuura, and Y. Kanemitsu, Phys. Rev. B 103, L041201 (2021).
[9] F. Sekiguchi, H. Hirori, G. Yumoto, A. Shimazaki, T. Nakamura, A. Wakamiya, and Y. Kanemitsu, Phys. Rev. Lett. 126, 077401 (2021).
[10] Y. Yamada, H. Mino, T. Kawahara, K. Oto, H. Suzuura, and Y. Kanemitsu, Phys. Rev. Lett. 126, 237401 (2021).
[11] Y. Yamada and Y. Kanemitsu, NPG Asia Materials 14, 48 (2022).
[12] Y. Kanemitsu, J. Chem. Phys. 151, 170902 (2019).
[13] G. Yumoto and Y. Kanemitsu, Phys. Chem. Chem. Phys. 24, 22405 (2022).
[14] G. Yumoto, H. Hirori, F. Sekiguchi, R. Sato, M. Saruyama, T. Teranishi, and Y. Kanemitsu, Nature Commun. 12, 3026 (2021).
[15] G. Yumoto, F. Sekiguchi, R. Hashimoto, T. Nakamura, A. Wakamiya, and Y. Kanemitsu, Sci. Adv. 8, eabp8135 (2022).
[16] E. Kobiyama, H. Tahara, M. Saruyama, R. Sato, T. Teranishi, and Y. Kanemitsu, Appl. Phys. Lett. 122, 252106 (2023).
Part of this work was supported by JSPS KAKENHI (Grant No. JP19H05465) and JST CREST (Grant No. JPMJCR21B4).