Proceedings of International Conference on Perovskite and Organic Photovoltaics and Optoelectronics (IPEROP19)
DOI: https://doi.org/10.29363/nanoge.iperop.2019.027
Publication date: 23rd October 2018
The remarkable performance of perovskite solar cells (> 20%) is hindered by the fact that this material present dynamic optical and electrical responses, which can lead to degradation. Specifically, identifying and controlling the effect of water, oxygen, temperature, bias, and light on their physical behavior is a pressing topic of research. To unfold the contribution of each intrinsic and extrinsic parameter on materials’ properties and devices’ performance, we combine advanced scanning probe methods based on photoluminesce (PL) microscopy and atomic force microscopy (AFM). We investigate a series of hybrid perovskites, including MAPbI3, MAPbBr3, CsxFA1−xPb(IyBr1−y)3 , and triple cation Cs-mixed. Through environmental PL microscopy we identify a humidity-induced PL hysteresis that strongly depends on the Cs/Br ratio [1]. Using fast Kelvin-probe force microscopy we quantify a dynamic open-circuit voltage (Voc) response as a function of perovskite chemical composition and illumination treatment, as will be discussed in details during the presentation [2,3]. The individual and collective effects of the five abovementioned parameters on perovskites ability to recover are further investigated using a machine learning (ML) approach. Our functional imaging platform [4,5], combined with ML, can be expanded to test the stability of emerging perovskites, including Pb-free options, and novel perovskites for multijunction solar cells.