DOI: https://doi.org/10.29363/nanoge.interect.2022.018
Publication date: 11th October 2022
Graphitic materials are largely explored as redox-active supports for metal species in acid/base catalysis, redox catalysis and electrocatalysis. [1] Edge terminations and in-plane point defects, such non 6-membered rings and vacancies on the basal planes of the graphene layers can be functionalized with other heteroatoms, such as O, N, B and P for anchoring metal active species. Of interest, N species offer opportunities for the enhancement of a generally poor stability of these metal species on carbon supports as well as a tuning of the reactivity and selectivity. Thus, offering a platform for comparative mechanistic studies aimed at aiding materials design. In this contribution I will present on the dynamics of metal species on various carbon supports, with focus on Fe and Cu systems, during electrocatalytic CO2 reduction as monitored in recent work [2] by complementary surface and bulk sensitive in situ X-ray Spectroscopy.] These dynamics are correlated to the electrocatalysts´ performances to develop robust structure/function relationships. The discussion will be centred on the nature of the active sites as well as the beneficial role of the N species.