DOI: https://doi.org/10.29363/nanoge.inform.2019.007
Publication date: 8th January 2019
Lead-free double-perovskites (A2M+M3+X6) have been recently proposed as a stable and environmental friendly alternative to lead-based perovskites. Among the vast number of possible double-perovskite compositions, Cs2AgBiBr6 has been the most investigated material, both from a theoretical and experimental point of view. To date, the majority of fundamental studies on this material have been conducted on single crystals or powders, which is due to the poor solubility of the material precursors and to difficulties in obtaining smooth and uniform films. Vapour deposition offers to be a promising alternative for the formation of Cs2AgBiBr6 films, overcoming the drawbacks of traditional solution chemistry methods and time-consuming growth of single crystals. In particular, physical vapour deposition can produce high-quality films with various thicknesses and smooth surfaces. In this way, numerous spectroscopic techniques which require non-scattering surfaces (like TRPL or THz spectroscopy), as well as thickness-dependent measurements can be conducted achieving an insight in the optoelectronic properties of the material. Here, we disclose our recent findings on vapour-deposited Cs2AgBiBr6, demonstrating not only efficient double-perovskite solar cells, but also presenting a fundamental understanding of the carriers dynamics in the double-perovskite thin films, not achievable otherwise.