Toward Highly Stable and Scalable Perovskite Solar Modules via Co-crystalline 2D Perovskite Passivation and Blade-Spin Deposition
Mahmoud Zendehdel a, Narges Yaghoobi Nia a b, Barbara Paci b, Marco Di Giovannantonio b, Amanda Generosi b, Enrico Leonardi c, Giorgio Contini b, Marco Guaragno b, Aldo Di Carlo a b
a CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Roma 00133, Italy
b CNR-ISM Istituto di Struttura della Materia, via del Fosso del Cavaliere 100, 00133 Rome, Italy
c Greatcell Solar Italia srl. Italy., Via Giorgio Scalia, 10, Roma, Italy
International Conference on Hybrid and Organic Photovoltaics
Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV22)
València, Spain, 2022 May 19th - 25th
Organizers: Pablo Docampo, Eva Unger and Elizabeth Gibson
Oral, Mahmoud Zendehdel, presentation 185
DOI: https://doi.org/10.29363/nanoge.hopv.2022.185
Publication date: 20th April 2022

of the PSCs from small area lab-scale cells to large area modules has been realized in various reports through different scalable techniques [1–3]. In one hand, wasting of the hazardous materials during deposition of the perovskite films make a critical challenge on the socio-economic interest and environmental impacts of the perovskite solar cells (PSCs) [4]. Optimization of the recently applied scalable deposition techniques for solution-based fabrication of efficient and stable perovskite solar modules (PSMs) is usually a challenging activity with low reproducibility from batch-to-batch production [5,6]. On the other hand, recent advances in 2-dimentioanl materials and surface passivation strategies opened a promising gate to pass the stability bottlenecks [7]. However, there are still some challenging points in terms of the materials’ type and deposition processes which induced some limitations against commercial application of such strategies [8]. In addition, most of the stability assessment reports have been realized based on lab-scale cells and despite a few reports [9–13], there is a lack in the literature for standard stability assessments of the perovskite solar modules.

Here, two innovative strategies have been introduced for scalable and zero-waste fabrication and highly improvement of the long-term stability of the PSMs against various thermal and light stresses. Firstly, a bulky molecular linker toward formation of novel co-crystalline 2D perovskite layers, resulting a multifunctional passivating of various types of the perovskite defects. By using double cation underlaying 3D perovskite (DCP) and top layer 2D perovskite PSMs with 9.0 cm2 and 48 cm2 active area have been fabricated, reaching to 20.2 % and 17.5 % PCE on the module active area, respectively. Fabricated modules showed promising stability against thermal and light soaking stresses (corresponding to the ISOS protocol) with >1100 h T93 thermal stability at 85 ˚C and >1100 h T86 under Maximum Power Point (MPP) operation condition under 1-sun illumination. Lastly, a zero-waste blade-spin/blade coating process is successfully applied for deposition of the 3D/2D perovskite phases shows the potential for >90% decrease of the Operational Expenditure (OPEX) by breakdown the materials costs from 1.99 €/m2 in spin-coating method to 0.18 €/m2 in blade-spin/blade coating approach.

[1] Yaghoobi Nia, N.; Zendehdel, M.; Abdi-Jalebi, M.; Castriotta, L. A.; Kosasih, F. U.; Lamanna, E.; Abolhasani, M. M.; Zheng, Z.; Andaji-Garmaroudi, Z.; Asadi, K.; Divitini, G.; Ducati, C.; Friend, R. H.; Di Carlo, A. Beyond 17% Stable Perovskite Solar Module via Polaron Arrangement of Tuned Polymeric Hole Transport Layer. Nano Energy 2021, 82, 105685. https://doi.org/10.1016/J.NANOEN.2020.105685. (2) Yaghoobi Nia, N.; Giordano, F.; Zendehdel, M.; Cinà, L.; Palma, A. L.; Medaglia, P. G.; Zakeeruddin, S. M.; Grätzel, M.; Di Carlo, A. Solution-Based Heteroepitaxial Growth of Stable Mixed Cation/Anion Hybrid Perovskite Thin Film under Ambient Condition via a Scalable Crystal Engineering Approach. Nano Energy 2020, 69. https://doi.org/10.1016/j.nanoen.2019.104441. (3) Park, N.-G.; Zhu, K. Scalable Fabrication and Coating Methods for Perovskite Solar Cells and Solar Modules. Nat. Rev. Mater. 2020, 5 (5), 333–350. https://doi.org/10.1038/s41578-019-0176-2. (4) Zendehdel, M.; Yaghoobi Nia, N.; Yaghoubinia, M. Emerging Thin Film Solar Panels. In Reliability and Ecological Aspects of Photovoltaic Modules; IntechOpen, 2020. https://doi.org/10.5772/intechopen.88733. (5) Ding, X.; Liu, J.; Harris, T. A. L. A Review of the Operating Limits in Slot Die Coating Processes. AIChE J. 2016, 62 (7), 2508–2524. https://doi.org/10.1002/aic.15268. (6) Castrejon-Pita, J. R.; Baxter, W. R. S.; Morgan, J.; Temple, S.; Martin, G. D.; Hutchings, I. M. FUTURE, OPPORTUNITIES AND CHALLENGES OF INKJET TECHNOLOGIES. At. Sprays 2013, 23 (6), 541–565. https://doi.org/10.1615/AtomizSpr.2013007653. (7) Magdassi, S.; World Scientific (Firm). The Chemistry of Inkjet Inks; World Scientific Pub. Co, 2010. (8) Zhang, F.; Lu, H.; Tong, J.; Berry, J. J.; Beard, M. C.; Zhu, K. Advances in Two-Dimensional Organic–Inorganic Hybrid Perovskites. Energy Environ. Sci. 2020, 13 (4), 1154–1186. https://doi.org/10.1039/C9EE03757H. (9) Yoo, J. J.; Wieghold, S.; Sponseller, M. C.; Chua, M. R.; Bertram, S. N.; Hartono, N. T. P.; Tresback, J. S.; Hansen, E. C.; Correa-Baena, J.-P.; Bulović, V.; Buonassisi, T.; Shin, S. S.; Bawendi, M. G. An Interface Stabilized Perovskite Solar Cell with High Stabilized Efficiency and Low Voltage Loss. Energy Environ. Sci. 2019, 12 (7), 2192–2199. https://doi.org/10.1039/C9EE00751B. (10) Bi, E.; Tang, W.; Chen, H.; Wang, Y.; Barbaud, J.; Wu, T.; Kong, W.; Tu, P.; Zhu, H.; Zeng, X.; He, J.; Kan, S.; Yang, X.; Grätzel, M.; Han, L. Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers. Joule 2019, 3 (11), 2748–2760. https://doi.org/10.1016/J.JOULE.2019.07.030. (11) Liu, Z.; Qiu, L.; Ono, L. K.; He, S.; Hu, Z.; Jiang, M.; Tong, G.; Wu, Z.; Jiang, Y.; Son, D.-Y.; Dang, Y.; Kazaoui, S.; Qi, Y. A Holistic Approach to Interface Stabilization for Efficient Perovskite Solar Modules with over 2,000-Hour Operational Stability. Nat. Energy 2020, 5 (8), 596–604. https://doi.org/10.1038/s41560-020-0653-2. (12) Christians, J. A.; Zhang, F.; Bramante, R. C.; Reese, M. O.; Schloemer, T. H.; Sellinger, A.; van Hest, M. F. A. M.; Zhu, K.; Berry, J. J.; Luther, J. M. Stability at Scale: Challenges of Module Interconnects for Perovskite Photovoltaics. ACS Energy Lett. 2018, 3 (10), 2502–2503. https://doi.org/10.1021/acsenergylett.8b01498. (13) Yaghoobi Nia, N.; Zendehdel, M.; Abdi-Jalebi, M.; Castriotta, L. A.; Kosasih, F. U.; Lamanna, E.; Abolhasani, M. M.; Zheng, Z.; Andaji-Garmaroudi, Z.; Asadi, K.; Divitini, G.; Ducati, C.; Friend, R. H.; Di Carlo, A. Beyond 17% Stable Perovskite Solar Module via Polaron Arrangement of Tuned Polymeric Hole Transport Layer. Nano Energy 2021, 82, 105685. https://doi.org/10.1016/j.nanoen.2020.105685. (14) Yaghoobi Nia, N.; Zendehdel, M.; Cinà, L.; Matteocci, F.; Di Carlo, A. A Crystal Engineering Approach for Scalable Perovskite Solar Cells and Module Fabrication: A Full out of Glove Box Procedure. J. Mater. Chem. A 2018, 6 (2), 659–671.

M. Z. gratefully acknowledge the funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No SGA 881603 GrapheneCore3. N.Y.N. acknowledges the Ministry of University and Research (MUR) for PON/FSE-REACT EU support. N.Y.N and A.D.C. acknowledge support from European Union’s Horizon 2020 research and innovation programme under grant agreement N°101006715 (VIPERLAB)

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info