Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV22)
DOI: https://doi.org/10.29363/nanoge.hopv.2022.156
Publication date: 20th April 2022
The emergence of metal halide perovskites has revolutionized the field of emerging photovoltaics. Typically, the active layers of perovskite solar cells are deposited either from solution, or alternatively by thermal evaporation. In this talk, I will describe how the two methods can be combined to fabricate highly efficient all-inorganic CsPbI3 perovskite solar cells. Specifically, half of the active layer is deposited by solution processing, following by thermally evaporating the second half. While devices fabricated by each method separately show a reasonable performance of 13-15%, the combination of the two methods leads to perovskite solar cells with improved open-circuit voltage, short-circuit current and fill factor, leading to a maximum photovoltaic performance >20%. Moreover, devices fabricated by this hybrid approach exhibit a significantly reduced hysteresis. We show that the improvement in performance and decrease in hysteresis are associated with a reduced density of defects in the active layers fabricated by the hybrid approach, thus demonstrating its high potential for the fabrication of efficient perovskite solar cells.