Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV22)
DOI: https://doi.org/10.29363/nanoge.hopv.2022.018
Publication date: 20th April 2022
Combining two-dimensional (2D) materials with organic materials can be very attractive for applications that require flexibility and where size and weight are important parameters to be considered, such as in wearable, portable and mobile applications. Organic materials usually exhibit excellent optical absorption efficiency and photo- and temperature-induced conformational changes, while 2D materials often show relatively high carrier mobility, superior mechanical flexibility, and tunable electronic and optical properties. Combining both systems can stabilize the organic materials and lead to heterostructures with both high carrier mobility and high optical absorption efficiency, which is promising for solar energy conversion. In this work we investigate, by means of density-functional-theory calculations, heterostructures composed of organic molecules (for example, pentacene, tetracene and azulene) and transition metal dichalcogenides (TMD) for application in photovoltaic devices. We examine the interaction between the molecules and monolayer TMDs as well as the band alignment of the heterostructures, considering effects of the molecular coverage and dielectric screening.
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 406901005, and used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1).