Origin of the High Frequency Intensity‐Modulated Photocurrent/Photovoltage Spectroscopy Response of Perovskite Solar Cells
Adam Pockett a, Michael Spence a, Suzanne Thomas a, Dimitrios Raptis a, Trystan Watson a, Matthew Carnie a
a SPECIFIC, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, UK, United Kingdom
International Conference on Hybrid and Organic Photovoltaics
Proceedings of 13th Conference on Hybrid and Organic Photovoltaics (HOPV21)
Online, Spain, 2021 May 24th - 28th
Organizers: Marina Freitag, Feng Gao and Sam Stranks
Oral, Adam Pockett, presentation 071
Publication date: 11th May 2021

The complete interpretation of small perturbation frequency‐domain measurements on perovskite solar cells has proven to be challenging. This is particularly true in the case of intensity‐modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) measurements in which the high frequency response is obscured by instrument limitations. A new experimental methodology capable of accurately resolving the high frequency response—often observable in the second and third quadrants of the complex plane—of a range of perovskite devices is demonstrated. By combining single‐frequency IMPS/IMVS measurements, it is able to construct the time dependence of the IMPS/IMVS response of these devices during their initial response to illumination. This reveals significant negative photocurrent/photovoltage signals at high frequency while devices reach steady state, which is in keeping with observations made from comparable time‐domain transient measurements. These techniques allow the underlying interfacial recombination and ion migration processes to be assessed, which are not always evident using steady‐state measurements. The ability to study and mitigate these processes is vital in optimizing the real‐world operation of devices.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info