Ion Transport in Perovskites: Dimensionality and the Interaction of Electronic Carriers with Ions
David Ginger a
a University of Washington, Department of Chemistry, United States
International Conference on Hybrid and Organic Photovoltaics
Proceedings of 13th Conference on Hybrid and Organic Photovoltaics (HOPV21)
Online, Spain, 2021 May 24th - 28th
Organizers: Marina Freitag, Feng Gao and Sam Stranks
Invited Speaker, David Ginger, presentation 019
Publication date: 11th May 2021

Ion motion remains an important topic in halide perovskite semiconductors. We discuss measurements of light- and bias-driven ion motion in halide perovskites, from early chemical evidence confirming photoinduced halide motion using imaging mass-spectroscopy, to recent scanning probe studies of ion motion under bias. Importantly, we show that the ability of bias stress (poling) to induce non-radiative defects due to ion migration hinges on a combination of both ion motion and redox processes associated with injected charge carriers. We study low-dimensional Ruddlesden-Popper phases that are of interest as materials for potentially improved stability and reduced ion motion, and we find that ion motion exists in 2D perovskite phases, and that it depends on the layer number and dimensionality of the perovskite.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info