Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV19)
DOI: https://doi.org/10.29363/nanoge.hopv.2020.148
Publication date: 6th February 2020
A well-known module reliability issue in crystalline-silicon photovoltaics arises when a shaded cell is driven into reverse bias by illuminated cells connected in series [1]. In this case, the shaded cell may dissipate a substantial amount of power, which can create hot spots and irreversibly damage the cell or encapsulant. This problem is even more severe for perovskite solar cells. It has been demonstrated [2] that, even in the absence of hot spot formation, such cells can degrade simply from being subjected to a few minutes of reverse bias. This degradation was suggested to be caused by an electrochemical reaction that occurs between mobile ions inside the perovskite and the adjacent layers, although only indirect evidence was given [2]. It also remains to be analyzed how the problem may manifest itself in monolithic perovskite/c-Si tandem cells, particularly when illuminated by different spectra and intensities. Here we investigate this instability further by using microstructural analysis techniques to determine the distribution of ions in degraded cells with different compositions and with different contact layers, both in single-junction and in tandem structures. We also analyze the requirements the cell must meet to be considered stable under reverse bias, taking into account the possibility of adding bypass diodes to the module.