Analysis of the Influence of Selective Contact Heterojunctions on the Performance of Perovskite Solar Cells
Manuel Garcia-Rosell a, Agustin Bou b, Juan A Jiménez-Tejada a, Juan Bisquert b, Pilar Lopez-Varo a
a Universidad de Granada, ES, Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias. Campus Fuentenueva, Granada, Spain
b Universitat Jaume I, Institute of Advanced Materials (INAM) - Spain, Avinguda de Vicent Sos Baynat, Castelló de la Plana, Spain
International Conference on Hybrid and Organic Photovoltaics
Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
Benidorm, Spain, 2018 May 28th - 31st
Organizers: Emilio Palomares and Rene Janssen
Poster, Agustin Bou, 271
Publication date: 21st February 2018

Knowledge of the mechanisms that take place at the selective contacts, located at the charge-transport-layer (CTL)/perovskite heterojunctions, is crucial for the optimization of perovskite solar cells. Anomalous high values of the low-frequency capacitance at open-circuit and short-circuit indicate a high accumulation of charge at the interfaces, which could hinder the extraction of charge and increase hysteresis in current-voltage curve. To investigate this issue, we develop a simulation model based on the drift-diffusion differential equations with specific boundary conditions at the interfaces. We have simulated the CTL/perovskite structures as part of the entire perovskite solar cell, in order to establish the realistic energy profile across the interface. The energy profile allows to detect in which situations free charge accumulation at the interfaces exists, and to quantify this accumulation as a function of the device and material parameters. We discuss the role and the importance of each CTL/perovskite interface at open-circuit and short-circuit. We conclude that the accumulation of charge at the interfaces is strongly affected by the specific contact materials, and critically depends on a compromise between the presence of ions, the values of the carrier mobility, and the interfacial and bulk recombination parameters.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info