Fundamental efficiency limit of lead iodide perovskite solar cells
Luis Pazos-Outon a, T. Patrick Xiao a, Eli Yablonovitch a
a University of California, Berkeley, US, Berkeley, California, EE. UU., Berkeley, United States
International Conference on Hybrid and Organic Photovoltaics
Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
Benidorm, Spain, 2018 May 28th - 31st
Organizers: Emilio Palomares and Rene Janssen
Oral, Luis Pazos-Outon, presentation 237
Publication date: 21st February 2018

Lead halide materials have seen a recent surge of interest from the photovoltaics community following the observation of surprisingly high photovoltaic performance, with optoelectronic properties similar to GaAs. This begs the question: What is the limit for the efficiency of these materials? It has been known that under 1-sun illumination the efficiency limit of crystalline silicon is ∼29%, despite the Shockley–Queisser (SQ) limit for its bandgap being ∼33%: the discrepancy is due to strong Auger recombination. In this article, we show that methyl ammonium lead iodide (MAPbI3) likewise has a larger than expected Auger coefficient. Auger nonradiative recombination decreases the theoretical external luminescence efficiency to ∼95% at open-circuit conditions. The Auger penalty is much reduced at the operating point where the carrier density is less, producing an oddly high fill factor of ∼90.4%. This compensates the Auger penalty and leads to a power conversion efficiency of 30.5%, close to ideal for the MAPbI3 bandgap.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info