Continuum limit of the Gaussian disorder model for organic solar cells
Sebastian Müller a
a University of Bristol, School of Mathematics, United Kingdom
International Conference on Hybrid and Organic Photovoltaics
Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
Benidorm, Spain, 2018 May 28th - 31st
Organizers: Emilio Palomares and Rene Janssen
Oral, Sebastian Müller, presentation 172
DOI: https://doi.org/10.29363/nanoge.hopv.2018.172
Publication date: 21st February 2018

We present theoretical work connecting two models of organic solar cells (and other organic semiconductors). One of these is the Gaussian disorder model [1]. In this model, the possible states of the charge carriers are localized on randomly distributed sites. The energies of these states follow a Gaussian distribution, and jumps from site i to j follow Miller-Abrahams jump rates [2]. These rates are proportional to exp(-2 gamma dij) where gamma is a constant and dij is the distance between i and j. If the site j has a larger energy (Ej>Ei) there is also a further factor exp(-(Ej-Ei)/(kBT)). A related model involves differential equations for the concentration of carriers involving drift, diffusion, generation, and recombination. We show how in a continuum limit the Gaussian disorder model gives rise to differential equations of this type. This approach establishes relations between the parameters of both models. It also allows to incorporate further effects into the differential equations, for instance related to the energy dependence of the concentration and to inhomogeneities in the distribution of states.

[1] H. Bässler, Phys. Status Solidi B 174, 15 (1993)

[2] A. Miller and E. Abrahams, Phys. Rev. 257 (1960)

 

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info