Engineering semiconductor materials for robust photoelectrochemical solar fuel production
Kevin Sivula a
a Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
International Conference on Hybrid and Organic Photovoltaics
Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
Benidorm, Spain, 2018 May 28th - 31st
Organizers: Emilio Palomares and Rene Janssen
Invited Speaker Session, Kevin Sivula, presentation 163
DOI: https://doi.org/10.29363/nanoge.hopv.2018.163
Publication date: 21st February 2018

The development of robust and inexpensive semiconducting materials that operate at high efficiency are needed to make the direct solar-to-fuel energy conversion by photoelectrochemical cells economically viable. In this presentation our laboratory’s progress in the development new light absorbing materials and co-catalysts will be discussed along with the application toward overall solar water splitting tandem cells for H2 production. Specifically, this talk will highlight recent results with the ternary oxides (CuFeO2 and ZnFe2O4) 2D transition metal dichalcogenides, and organic (π-conjugated) semiconductors as solution-processed photoelectrodes.

With respect to ternary oxides, in our recent work [1,2] we demonstrate state-of-the-art photocurrent with optimized nanostructuring and address interfacial recombination by the electrochemical characterization of the surface states and attached co-catalysts.

In addition, we report an advance in the performance of solution processed two-dimensional (2-D) WSe2 for high-efficiency solar water reduction by gaining insight into charge transport and recombination by varying the 2D flake size[3]and passivating defect sites[4].

Finally, with respect to π-conjugated organic semiconductors, in our recent work [5] we demonstrate a π-conjugated organic semiconductor for the sustained direct solar water oxidation reaction. Aspects of catalysis and charge-carrier separation/transport are discussed.

 

[1] Prevot, M. S.; Li, Y.; Guijarro, N.; Sivula, K. J. Mater. Chem. A 2016, 4, 3018-3026.

[2] Guijarro, N.; Bornoz, P.; Prevot, M.; Yu, X.; Zhu, X.; Johnson, M.; Jeanbourquin, X.; Le Formal, F.; Sivula, K., Sustainable Energy Fuels 2018, 2, 103-117.

[3] Yu, X.; Sivula, K., Chem. Mater. 2017, 29, 6863-6875.

[4] Yu, X.; Guijarro, N.; Johnson, M.; Sivula, K. Nano Lett. 2018, 18, 215-222.

[5] Bornoz, P.; Prévot, M. S.; Yu, X.; Guijarro, N.; Sivula, K. J. Am. Chem. Soc. 2015, 137, 15338.

 

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info