Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
DOI: https://doi.org/10.29363/nanoge.hopv.2018.141
Publication date: 21st February 2018
One promising strategy for surpassing the practical efficiency limit of crystalline silicon solar cells (c-Si) is to add a wide band-gap top cell to absorb high-energy photons with less thermalization loss. Perovskite solar cells (PSC) are ideal candidates for the role of top cell to a c-Si bottom cell due to factors such as their sharp optical absorption edge and highly tunable bandgap. The architecture of these tandem solar cells can be 4-terminal mechanically stacked or 2-terminal monolithic. We demonstrate a versatile low-temperature fabrication method for the PSC, which combines evaporation and spin coating. This method is compatible with significant surface roughness of the bottom substrate or cell of a monolithic tandem. In addition, the composition of the perovskite layer can be varied independently between different A-site cations (methylammonium, formamidinium, cesium, and various large organic cations) and halogen anions (chloride, bromide, iodide). Through such chemical engineering, we show perovskite materials with band gap values between 1.5 and 1.8 eV, along with a modified layer structure through the incorporation of large organic cations such as guanidinium, imidazolium, benzylammonium, and phenethylammonium. When employing an optimized cesium formamidinium lead mixed iodide/bromide composition as a top cell, we demonstrate a current matched monolithic tandem solar cell with a total current over 40 mA cm-2. This material and device development is supported by extensive characterization, which includes ellipsometry and other optical spectroscopy methods, as well as X-ray diffraction, atomic force microscopy, and various electron microscopy techniques.