Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
DOI: https://doi.org/10.29363/nanoge.hopv.2018.122
Publication date: 21st February 2018
We report on room temperature, solution-processed transparent Ag nanowire (AgNW) electrodes with enhanced conductivity, transparency, as well as chemical and mechanical stability. AgNW films were made with fast, large area, ultrasonic spray-coating technology. Different dilution ratios of nanowires/solvent and deposition parameters (such as flow-rate and scan-rate) where tested for optimizing the sheet resistance and optical transmittance. In a fast and low temperature post-deposition plasma-process, the AgNW films where cured to reduce the nanowire contact resistance, which greatly influences the film conductivity. The process proved to be suitable for both glass and PET substrates. Nanowire films achieved comparable sheet resistance and transparency as the ITO reference electrode (>80% transparency with ~10 Ω/square.). To lower the roughness and increase the stability, AgNW films were embedded in a UV-curable polymer and then transferred onto the target substrate. The process was optimized for embedding AgNW films on glass and PET. Improvement of the chemical stability of the embedded AgNW films was observed in first tests with methylammonium lead iodide chloride (CH3NH3PbI3-xClx) perovskite inks. In non-embedded AgNW films, despite overcoating with PEDOT:PSS degradation was observed. By embedding the AgNW films, the degradation was hampered.