Solution-based and Microfabrication-free Approach to Form Ordered Nanostructured Perovskites for Photovoltaic and LED Applications
Wallace Choy a, Jian Mao a
a Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
International Conference on Hybrid and Organic Photovoltaics
Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
Benidorm, Spain, 2018 May 28th - 31st
Organizers: Emilio Palomares and Rene Janssen
Oral, Wallace Choy, presentation 117
DOI: https://doi.org/10.29363/nanoge.hopv.2018.117
Publication date: 21st February 2018

Organic-inorganic hybrid perovskite has attracted extensive attention in recent years for its wide applications in various optoelectronic devices such as solar cells, light emitting diodes (LEDs), lasers, transistors, and photodetectors. However, it is still challenging to directly pattern perovskite thin films because perovskite is very sensitive to polar solvents and high temperature environment. In this work, we demonstrate our novel approach to fabricate high-quality perovskite grating and its potential applications in optoelectronic devices through the study of the performances of grating patterned light emitting diode.[1]

Our results show that (1) different from typical imprint method to form nanograting, we report for the first time to utilize methylamine gas (MA) to fabricate CH3NH3PbI3 (MAPbI3) periodic nanostructures via MA induced phase transition under ambient condition (the MA induced intermediate is liquid under room temperature). This approach is quite different from traditional nanoimprinting which use high pressure to press the rigid mold and completely different from most used photo-lithography or electron beam lithography technique which needs solvent to etch the sample. (2) our direct nano-patterning approach is suitable for fabrication of large-area perovskite pattern. As a proof of concept in lab scale, 15 mm*15 mm periodic nanostructures have been demonstrated. (3) Our direct nano-patterning approach can not only fabricate periodic nanostructures in different perovskite materials such as MAPbI3 and HC(NH2)2PbI3 (FAPbI3) but also improve the crystallinity, light absorption and emission of perovskite for solar cell and LED applications. It should be noted that some works reported by others also demonstrate the fabrication of perovskite grating, however most of them lead to reduced crystallinity and PL. Consequently, our approach opens up a simple way to nano-engineering perovskite. The nano-patterned perovskite can be used in different perovskite optoelectronic devices.

Reference: [1] Adv. Funct. Mater., 2017, DOI: 10.1002/adfm.201606525.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info