Doping profile in planar perovskite solar cells
Andreas Baumann a, Mathias Fischer b, Kristofer Tvingstedt b, Vladimir Dyakonov a b
a Bavarian Center for Applied Energy Research, Magdalene-Schoch-Str. 3, 97074 Würzburg, Germany
b Experimental Physics VI, Julius Maximillian University of Würzburg, 97074 Würzburg, Germany
International Conference on Hybrid and Organic Photovoltaics
Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
Benidorm, Spain, 2018 May 28th - 31st
Organizers: Emilio Palomares and Rene Janssen
Oral, Andreas Baumann, presentation 101
DOI: https://doi.org/10.29363/nanoge.hopv.2018.101
Publication date: 21st February 2018

So far, little attention has been paid to doping of hybrid perovskites and hence little is known not only about the doping concentration but also the type of dopants, whether it is unintentional doping, e. g. due to non-stoichiometric composition and defects or due to substitutional doping, the inclusion of foreign atoms. A detailed knowledge on the type of doping in perovskite solar cells is crucial to understand the device behavior, particularly the more this material class develops towards commercialization. Currently, numerous approaches are being pursued to generate intentionally doped hybrid perovskite semiconducting materials. Capacitance-voltage measurements (CV) by means of Mott-Schottky (MS) analysis represents a well-established method to determine doping concentration as well as the built-in potential in semiconductors. It is based on analyzing the variation of the depletion layer thickness, and the corresponding change of capacitance with applied electric field. In perovskite solar cells, however, the so-called MS-plot is rarely linear which makes a reliable determination of the parameters difficult.

In this work, we present a modified CV measurement scheme to determine the doping concentration and profile in different hybrid perovskite solar cells based on MS analysis. In detail, we determined the doping concentration in planar-type p-i-n perovskite solar cells based on methylammonium lead iodide (MAPI) as well as formamidinium lead iodide (FAPI). In the MAPI device, we found an inhomogeneous doping profile across the perovskite absorber with concentrations in the range from 1016 – 1017 cm-3 instead of a constant doping concentration as observed in the FAPI device. We relate this to the presence of mobile dopants. Finally, we present temperature dependent impedance measurements, which support the picture of mobile dopants.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info