Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
DOI: https://doi.org/10.29363/nanoge.hopv.2018.100
Publication date: 21st February 2018
Colloidal cesium lead halide quantum dot gives impact to perovskite research field with outstanding photophysical properties. Scientific approaches from both quantum dot and perovskite perspectives attracts energy-related researchers to study fundamental properties and to apply them in optoelectronic devices. Recent advances opened application of the CsPbX3 quantum dots to photovoltaic devices with more than 12 % photoconversion efficiency, but its photo-induced charge transfer processes in devices is needed to be studied more. Herein we studied the light-induced charge generation and flow processes in the CsPbX3 quantum dots with electron/hole transfer medium for photovoltaic device/LED applications. Interestingly, we found that the CsPbX3 quantum dots based device can work as both solar cell and LEDs at the same moment. Interestingly, with different deposition condition or different composition, the charge generation and collection from CsPbX3 can vary and so their performances can be enhanced as well. Through electrochemical impedance spectroscopic characterizations, we also tracked the light-driven processes.