Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
DOI: https://doi.org/10.29363/nanoge.hopv.2018.091
Publication date: 21st February 2018
Organic–inorganic lead halide perovskites have shown photovoltaic performances above 20% in a range of solar cell architectures while offering simple and low-cost processability. Despite the multiple ionic compositions that have been reported so far, the presence of organic constituents is an essential element in all of the high-efficiency formulations, with the methylammonium and formamidinium cations being the sole efficient options available to date. In this study, we demonstrate improved material stability after the incorporation of a large organic cation, guanidinium, into the MAPbI3 crystal structure, which delivers average power conversion efficiencies over 19%, and stabilized performance for 1,000 h under continuous light illumination, a fundamental step within the perovskite field. We have extensively characterized these mixed cation perovskites defining the maximum percentage of guanidinium that can be incorporated into the MAPbI3 perovskite. Interestingly, up to a 25% of methylammonium is substituted by the large guanidinium cation thanks to the formation of three hydrogen bonds per organic cation.