Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
DOI: https://doi.org/10.29363/nanoge.hopv.2018.083
Publication date: 21st February 2018
The introduction of cesium (Cs) and/or rubidium (Rb) cations to the FA0.83MA0.17Pb(I0.83Br0.17)3 perovskite has recently shown to result in remarkable enhancements in solar cell performance. However, the origin of these improvements has not been fully understood yet. In order to elucidate the impact of the inorganic cation additives on the trap landscape and charge transport properties within perovskite solar cells, Time-of-Flight (ToF), Time-Resolved Microwave Conductivity (TRMC), and Thermally Stimulated Current (TSC) measurements were performed.[1] By combining these complementary experimental techniques we can assess both local features within the perovskite crystals and macroscopic properties of perovskite thin films and full devices. Most importantly, our results show that Cs-incorporation significantly reduces the trap density in the perovskite layer and removes deep trap states. This is in good agreement with the observed improvements in Voc and fill factor of Cs-containing devices. In comparison, Rb-addition results in an increased charge carrier mobility, which is accompanied by a minor increase in device efficiency and reduced current-voltage hysteresis. We found indications for an inhomogeneous distribution of Rb within the perovskite layer and therefore hypothesize that the effect of Rb is mainly present in surface passivation. By mixing Cs and Rb, the advantages of both inorganic cations can be found in the resulting state-of-the-art quadruple cation perovskite (Cs–Rb–FA–MA) devices, showing the lowest trap density, the highest charge mobility and the most stable power output. Our in-depth study provides insights into the role of these additives in multiple-cation perovskite solar cells, which are essential for the future optimization of high-performance devices.
[1] Hu, Y.; Hutter, E. M.; Rieder, P.; Grill, I.; Hanisch, J.; Aygüler, M. F.; Hufnagel, A. G.; Handloser, M.; Bein, T.; Hartschuh, A.; Tvingstedt, K.; Dyakonov, V.; Baumann, A.; Savenije, T. J.; Petrus, M. L.; Docampo, P. Adv. Energy Mater. 2018, in press.