Near and Short-wave Infrared Colloidal Quantum Dot Solar Cells
Gerasimos Konstantatos a b
a ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Avinguda Carl Friedrich Gauss, 3, Castelldefels, Spain
b Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain, Passeig Lluis Companys 23, Barcelona, Spain
International Conference on Hybrid and Organic Photovoltaics
Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
Benidorm, Spain, 2018 May 28th - 31st
Organizers: Emilio Palomares and Rene Janssen
Invited Speaker, Gerasimos Konstantatos, presentation 070
DOI: https://doi.org/10.29363/nanoge.hopv.2018.070
Publication date: 21st February 2018

In the first part of the talk I will present recent progress in the field of short-wave infrared colloidal quantum dot solar cells, as promising solution processed platform to harness solar energy beyond Silicon´s, CIGS´ or even perovksites´ reach. I will describe the challenges associated in high performance SWIR CQD solar cells and the tools available to engineer their energy levels and trap passivation towards high performance [1]. Then I will present preliminary results on all-CQD tandem solar cells that employ a one-atom thick graphene as intermediate recombination layer eliminating the need for vacuum-based deposition of multiple metal oxide sputtered layers or use of metal nanoparticles.

In the second part of my talk I will discuss recent progress on synergistic surface and architecture engineering of CQD solar cells to minimize trap state density and reach high open circuit voltages [2, 3]. I will conclude by showing some correlations on the performance of CQD solar cells with CQD light emitting diodes that point to the fact that a CQD thin film should yield both high efficiency solar cells and light emitting diodes.

[1] Y. Bi, S. Pradhan, S. Gupta, M. Z. Akgul, A. Stavrinadis, G. Konstantatos Adv. Mater. [Online DOI: 10.1002/adma.201704928] (2018)

[2] Breaking the open-circuit voltage deficit floor in PbS quantum dot solar cells through synergistic ligand and architecture engineering S. Pradhan, A. Stavrinadis, S. Gupta, S. Christodoulou, G. Konstantatos ACS Energy Lett. 2, 1444-1449 (2017)

[3] Trap-state suppression and improved charge transport in PbS quantum dot solar cells with synergistic mixed-ligand treatments S. Pradhan, A. Stavrinadis, S. Gupta, Y. Bi, F. Di Stasio, G. Konstantatos Small 13, 1700598 (2017)

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info