Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
Publication date: 21st February 2018
Metal halide perovskites such as methylammonium lead iodide (MAPbI3) are highly promising materials for photovoltaics. However, the relationship between the organic nature of the cation and the optoelectronic quality remains debated. In this work, we use different techniques to prepare fully inorganic black-phase CsPbI3,1 and compare the optoelectronic properties to their MA-based analogues.2,3 Using the Time-Resolved Microwave Conductivity (TRMC) technique, we measure charge carrier mobilities of around 25 cm2/(Vs) in CsPbI3 prepared via physical vapor deposition,1 which is very comparable to the 37 cm2/(Vs) that we found in vapor-deposited MAPbI3.2 Furthermore, we observe impressively long charge carrier lifetimes exceeding 10 microseconds for these vapor-deposited CsPbI3 films and corresponding second order recombination rate constants of 1.3 x 10-10 cm3s-1, which is again similar to fully optimized MAPbI3 layers. Additionally, we find that these high quality CsPbI3 films yield photovoltaic devices with power conversion efficiencies close to 9%.1 Altogether, our results suggest that charge carrier mobility and lifetime are mainly dictated by the inorganic framework rather than the organic nature of the cation. However, in spite of its promising optoelectronic properties, fully inorganic CsPbI3 perovskites suffer from inferior crystal-phase stability and thus, the presence of organic cations might still be required for production of stable, high-efficiency solar cells. On studying a number of mixed-cation perovskites, we finally find that in fact, the charge carrier mobilities and lifetimes are favorably tuned by adding controlled amounts of inorganic cations, such as Cs and Rb, to metal halide perovskites with organic cations.3
1. Hutter, E. M.; Sutton, R. J.; Chandrashekar, S.; Abdi-Jalebi, M.; Stranks, S. D.; Snaith, H. J.; Savenije, T. J. ACS Energy Lett. 2017, 2, 1901.
2. Hutter, E. M.; Hofman, J.-J.; Petrus, M. L.; Moes, M.; Abellón, R. D.; Docampo, P.; Savenije, T. J. Adv. Energy Mater. 2017, 1602349.
3. Hu, Y.; Hutter, E. M.; Rieder, P.; Grill, I.; Hanisch, J.; Aygüler, M. F.; Hufnagel, A. G.; Handloser, M.; Bein, T.; Hartschuh, A.; Tvingstedt, K.; Dyakonov, V.; Baumann, A.; Savenije, T. J.; Petrus, M. L.; Docampo, P. Adv. Energy Mater. 2018, 1703057.