Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
DOI: https://doi.org/10.29363/nanoge.hopv.2018.056
Publication date: 21st February 2018
Organometal halide perovskites have attracted widespread attention as the most favorable prospective material for photovoltaic technology because
of their high photoinduced charge separation and carrier transport perfor- mance. However, the microstructural aspects within the organometal halide perovskite are still unknown, even though it belongs to a crystal system.
Here direct observation of the microstructure of the thin lm organometal halide perovskite using transmission electron microscopy is reported. Unlike previous reports claiming each phase of the organometal halide perovskite solely exists at a given temperature range, it is identi ed that the tetragonal and cubic phases coexist at room temperature, and it is con rmed that superlattices composed of a mixture of tetragonal and cubic phases are self- organized without a compositional change. The organometal halide perov- skite self-adjusts the con guration of phases and automatically organizes a buffer layer at boundaries by introducing a superlattice. This report shows the fundamental crystallographic information for the organometal halide perov- skite and demonstrates new possibilities as promising materials for various applications.