Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
DOI: https://doi.org/10.29363/nanoge.hopv.2018.027
Publication date: 21st February 2018
Understanding and optimizing charge-transfer reactions in dye-sensitized solar cells under operational conditions is of crucial importance for further improvements in efficiency of these devices. In recent work we demonstrated that tandem redox mediator electrolytes, where tris(p-anisyl)amine (TPAA) is added in the standard cobalt tris(bipyridine) electrolyte, lead to higher efficiencies through an efficient cascade of electron transfer reactions.1 Here, we explore the effects of fine-tuning the length of the alkoxyl chain of TPAA intermediates on solar cell performance and charge transfer kinetics. By combining the D-A-π-A organic dye AQ310 and a series of tandem electrolytes, efficiencies ranging from 9.7 % to 11 % were obtained, corresponding to an up to 50 % improvement compared to the same systems with bare cobalt tris(bipyridine) electrolyte. Notably, high open-circuit voltages of more than 1 V are obtained. Detailed charge transfer studies reveal significantly accelerated dye regeneration rate by the redox intermediate and slowed-down recombination kinetics, with a clear dependency on the length of alkoxyl chain. These results highlight the structural importance of redox intermediate for optimized charge-transfer in sensitized-semiconductor/electrolyte interface and pave the way to the further improvements in dye-sensitized solar cells.
Ref. 1: Hao, Y.; Yang, W.; Zhang, L.; Jiang, R.; Mijangos, E.; Saygili, Y.; Hammarström, L.; Hagfeldt, A.; Boschloo, G. Nature Commun. 2016, 7, Art. No. 13934.