Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
DOI: https://doi.org/10.29363/nanoge.hopv.2018.024
Publication date: 21st February 2018
In bulk-heterojunction organic solar cells (BHJ-OSCs), exciton dissociation and charge transport are highly sensitive to the molecular packing pattern and phase separation morphology in blend films. Efficient photovoltaic small molecules (SMs) typically possess an acceptor-donor-acceptor (A-D-A) structure that causes intrinsic anisotropy, limiting the control over molecular packing because of the lack of an effective method for modulating molecular orientation. Consequently, the performance of non-fullerene SM organic solar cells (NFSM-OSCs) is currently still lower than that of fullerene-based devices. In this report, we use a group of model compounds, named DRTB-T-CX (X=2, 4, 6 and 8), to demonstrate that adjusting the length of the end alkyl chain can be used to modify the molecular orientation. Through 2D grazing incidence wide-angle X-ray scattering (GIWAXS) characterization, we observed the transition of the molecular orientation in DRTB-T-CX films from edge-on to face-on. Meanwhile, the film comprising the compound with the preferred face-on orientation is found to have enhanced charge mobility and an increased correlation length of π-π stacking, leading to a substantial improvement in the efficiency of the NFSM-OSCs. A top-performance power conversion efficiency (PCE) of up to 11.24% is achieved with the DRTB-T-C4/IT-4F-based device, which is the best performance reported for a state-of-the-art NFSM-OSC. Remarkably, devices based on DRTB-T-C4/IT-4F with active layer thicknesses up to 300 nm can still retain a high PCE of 10% in single-junction solar cells.