Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV16)
Publication date: 28th March 2016
Four spiro[fluorene-9,9′-xanthene] (SFX) derivatives, SFX-TAD, SFX-TCz, SFX-TPTZ and SFX-MeOTAD have been synthesized for use as hole-transport materials and fully characterized by 1H/13C NMR spectroscopy, mass spectrometry, XRD and DSC.1 Their thermal, optical and electrochemical properties were investigated. The use of different substituents affects the highest occupied molecular orbital (HOMO) energy level proving the versatility of the central core towards the facile and low-cost preparation of spiro-hole-transport materials. Among them, we have so far studied SFX-MeOTAD in detail for application in perovskite solar cells with device architecture glass/FTO/compact TiO2/mesoporous Al2O3/CH3NH3PbI3−xClx/HTM/Au. This material shows high glass transition temperature, high solubility, purely amorphous state and HOMO level alignment almost identical to spiro-MeOTAD. We show that devices employing SFX-MeOTAD show high power conversion efficiency up to 12.4%, compared with 13.0% for spiro-MeOTAD, but with the significant advantage of more than 5 times lower cost of synthesis. Furthermore, the easy synthesis of this series has enabled us to prepare examples of varying redox potential, offering a choice of HTM tailored to other emerging perovskite solar cell materials.
1. M. Maciejczyk, A. Ivaturi and N. Robertson, J. Mater. Chem. A, 2016, 4, 4855–4863.