To understand the Crystalline growth of Organic-Inorganic Lead Halide Perovskite using Vapor assisted two step coating method
a Uppsala University, Ångström Laboratory, Sweden, Lägerhyddsvägen, 1, Uppsala, Sweden
b Department of Physics and Astronomy; Molecular and Condensed Matter Physics, Uppsala University, Box 516, Uppsala, Sweden
International Conference on Hybrid and Organic Photovoltaics
Proceedings of International Conference on Hybrid and Organic Photovoltaics 2015 (HOPV15)
Proceedings of International Conference on Hybrid and Organic Photovoltaics 2015 (HOPV15)
Roma, Italy, 2015 May 11th - 13th
Organizer: Filippo De Angelis
Poster, Sagar Motilal Jain, 402
Publication date: 5th February 2015
Publication date: 5th February 2015
Despite the rapid progress in organic-inorganic CH3NH3PbI3 perovskite device performance.1,2,3,4 understanding of the structural and electronic properties of perovskite is till in its infancy.
It is well recognized that the quality of perovskite film plays an important role in achieving high efficiency solar cells. Therefore, the development of perovskite preparation methods is an active area of research. Solution process spin coating often gives films with the island structure, pinholes, and incomplete surface coverage5,6
Here, we exploited In-situ vapor deposition technique to have better control on the reactivity of intermediate steps and final perovskite formation. The PbI2 film exposed to methyl ammonium iodide vapor for different contact time. As shown in the XRD pattern the evolution of perovskite formation on expence of PbI2 was monitored. The highest power conversion efficiency obtained so far is 10.3 %.
Figure 1. CH3NH3PbI3 perovskite formation time evolution - XRD patterns at 0 (PbI2), 10, 30 and 60 minutes.
1. Burschka J. ; Pellet N. , Moon S. J.; Baker R. H.; Gao P.; Nazeeruddin M. K.; and Gratzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316-319. 2. Kim H.-S.; Lee C.-R; J.-H. Im; Lee, K.-B.; Moehl T.; Marchioro A. ; Moon S.-J.; Humphry-Baker R.; Yum J.-H.; Moser J. E.; M. Gratzel and N.G. Park . Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. 3. Ryu S., Noh J. H., Jeon N. J., Kim Y. C., Yang W. S., Seo J. W. and Seok S. Il. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci., 2014, 7, 2614-2618. 4. Liu M.; Johnston M. B. and Snaith H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501,395-398. 5. Eperon G. E.; Burlakov V. M.; Docampo P. ; Goriely A.; Snaith H. J.; Morphological Control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151- 157. 6. Saliba M. ; Tan K. W. ; Sai H. ; Moore D. T. ; Scott T.; Zhang W. ; Estroff L. A. ; Wiesner U.; Snaith H. J., Influence of thermal processing protocol upon the crystallization and photovoltaic performance of organic-inorganic lead trihalide perovskite. J. Phys. Chem. C 2014, 118,30 17171-17177.
Figure 1. CH3NH3PbI3 perovskite formation time evolution - XRD patterns at 0 (PbI2), 10, 30 and 60 minutes.
1. Burschka J. ; Pellet N. , Moon S. J.; Baker R. H.; Gao P.; Nazeeruddin M. K.; and Gratzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316-319. 2. Kim H.-S.; Lee C.-R; J.-H. Im; Lee, K.-B.; Moehl T.; Marchioro A. ; Moon S.-J.; Humphry-Baker R.; Yum J.-H.; Moser J. E.; M. Gratzel and N.G. Park . Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. 3. Ryu S., Noh J. H., Jeon N. J., Kim Y. C., Yang W. S., Seo J. W. and Seok S. Il. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci., 2014, 7, 2614-2618. 4. Liu M.; Johnston M. B. and Snaith H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501,395-398. 5. Eperon G. E.; Burlakov V. M.; Docampo P. ; Goriely A.; Snaith H. J.; Morphological Control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151- 157. 6. Saliba M. ; Tan K. W. ; Sai H. ; Moore D. T. ; Scott T.; Zhang W. ; Estroff L. A. ; Wiesner U.; Snaith H. J., Influence of thermal processing protocol upon the crystallization and photovoltaic performance of organic-inorganic lead trihalide perovskite. J. Phys. Chem. C 2014, 118,30 17171-17177.
© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO