Proceedings of 6th International Conference on Hybrid and Organic Photovoltaics (HOPV14)
Publication date: 1st March 2014
Among Organic Electronics, solution-processable π-conjugated polymers are proving particularly promising in bulk-heterojunction (BHJ) solar cells with fullerene acceptors such as PCBM.[1] In the past few years, we have found that varying the size and branching of solubilizing side-chains in π-conjugated polymers impacts their self-assembling properties in thin-films. Beyond film-forming properties, nanoscale ordering in the active layer governs material and device performance. For example, in poly(benzo[1,2-b:4,5-b’]dithiophene–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD), side-chain substituents of various size and branching impart distinct molecular packing distances (i.e., π–π stacking and lamellar spacing),[2] varying degrees of nanostructural order in thin films,[2] and preferential backbone orientation relative to the device substrate (Fig.1).[3,4] While these structural variations seem to correlate with BHJ solar cell performance, with power conversion efficiencies ranging from 4% to 8.5%,[2,3,5] we believe that other contributing parameters – such as the local conformations between the polymer and the fullerene, and the domain distribution/composition across the BHJ (i.e., pure/mixed phases) – should also be taken into account.[6,7] Other discrete modifications of PBDTTPD’s molecular structure affect polymer performance in BHJ solar cells with PCBM, and our recent developments emphasize how systematic structure-property relationship studies impact the design of efficient polymer donors for BHJ solar cell applications.[8-10]
[1] P. M. Beaujuge, and J. M. J. Fréchet, JACS, 2011, 133, 20009. [2] C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, and J. M. J. Fréchet, JACS, 2010, 132, 7595. [3] C. Cabanetos, A. El Labban, J. A. Bartelt, J. D. Douglas, W. R. Mateker, J. M. J. Fréchet, M. D. McGehee, and P. M. Beaujuge, JACS, 2013, 135, 4656. [4] J. Warnan, A. El Labban, O. Ratel, C. Cabanetos, C. Tassone, M. F. Toney, and P. M. Beaujuge, 2014, Submitted. [5] J. A. Bartelt, J. D. Douglas, W. R. Mateker, A. El Labban, C. J. Tassone, M. F. Toney, J. M. J. Fréchet, P. M. Beaujuge, and M. D. McGehee, Adv. Energy Mater., 2014, Accepted. [6] J. A. Bartelt, Z. M. Beiley, E. T. Hoke, W. R. Mateker, J. D. Douglas, B. A. Collins, J. R. Tumbleston, K. R. Graham, A. Amassian, H. Ade, J. M. J. Fréchet, M. F. Toney, and M. D. McGehee, Adv. Energy Mater., 2013, 3, 364. [7] K. R. Graham, C. Cabanetos, J. P. Jahnke, M. N. Idso, A. El Labban, G. O. Ngongang Ndjawa, B. F. Chmelka, A. Amassian, P. M. Beaujuge, M. D. McGehee, 2014, Submitted. [8] J. Warnan, C. Cabanetos, A. El Labban, M. R. Hansen, C. Tassone, M. F. Toney, and P. M. Beaujuge, 2014, Submitted. [9] J. Warnan, A. El Labban, C. Cabanetos, E. Hoke, C. Risko, J-L. Brédas, M. D. McGehee, and P. M. Beaujuge, Chem. Mater., 2014, Accepted. [10] J. Warnan, C. Cabanetos, R. Bude, A. El Labban, Liang Li, and P. M. Beaujuge, 2014, Submitted.