Determining the Intrinsic and the Injection Dependent Charge Carrier Concentration in Organic Solar Cells Using the Suns-Voc Method
Sebastian Schiefer a, Birger Zimmermann a, Uli Würfel a b
a Fraunhofer Institute for Solar Energy Systems ISE, Germany, Heidenhofstraße, 2, Freiburg im Breisgau, Germany
b Freiburg Materials Research Center FMF, Albert-Ludwigs-University Freiburg, DE, Stefan-Meier-Straße, 25, Freiburg im Breisgau, Germany
International Conference on Hybrid and Organic Photovoltaics
Proceedings of 6th International Conference on Hybrid and Organic Photovoltaics (HOPV14)
Ecublens, Switzerland, 2014 May 11th - 14th
Organizers: Michael Graetzel and Mohammad Nazeeruddin
Oral, Uli Würfel, presentation 108
Publication date: 1st March 2014

Due to the rather low charge carrier mobilities in the photoactive layer of organic solar cells (OSC) the corresponding transport resistance is much higher as in e.g. silicon solar cells. It causes voltage drops which enhance recombination and limit the fill factor. We have successfully applied the Suns-Voc method to determine the transport resistance in OSC. In a Suns-Voc measurement a solar cell is illuminated by a flash light which decays over several orders of magnitudes in intensity while the open circuit voltage is continuously monitored. The intensity can be associated with an implied current density and thus a pseudo JV-curve is obtained. This pseudo JV-curve is the curve the solar cell would have if there was no series resistance[1]. It will be shown how it is possible - once the transport resistance is known - to derive both the intrinsic as well as the injection dependent charge carrier density of the photoactive layer[2]. These are important quantities for the theoretical description of OSC and our method can significantly narrow down their uncertainty and thus contribute to an improved understanding of the limiting factors of OSC. Furthermore, the method could also be applied to other type of solar cells which have a fill factor limitation related to the transport of charge carriers through the photoactive layer.



[1] S. Schiefer, B. Zimmermann, S. Glunz, U. Würfel, Applicability of the Suns-Voc method on OSC, IEEE J. of Photov. 4 (2014) 271–277. [2] S. Schiefer, B. Zimmermann, U. Würfel, Determination of the Intrinsic and the Injection Dependent Charge Carrier Density in OSCs Using the Suns-Voc Method, accepted in J. Appl. Phys.
© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info