DOI: https://doi.org/10.29363/nanoge.emlem.2024.003
Publication date: 13th July 2024
Lead halide perovskite nanocrystals (LHP NCs) exhibit instability due to the dynamic and labile nature of both their inorganic core and the organic-inorganic interface, adversely impacting their optical and electronic properties [1]. The quest for novel capping ligands has not stopped, rather contrary [2], given the ever-expanding expectations for LHP NCs' deployment as classical and quantum light sources [3, 4]. We hypothesized that the facile molecular engineering of sulfonium salts as X-type ligands could enable highly customized surface chemistries for LHP NCs. Molecular dynamics simulations indicated that sulfonium ligands with diverse tail and headgroup structures exhibit equal or greater affinity to CsPbBr3 surfaces compared to their broadly studied ammonium counterparts. CsPbBr3 NCs capped with sulfonium bromides exhibit photoluminescence quantum yields exceeding 90% in colloids and enhanced durability in the typical purification processes. The compactness of the headgroup and tail branching significantly govern the long-term colloidal stability and resilience towards dilution and concentration. Further molecular engineering of sulfonium ligands allowed venturing into more demanding MAPbBr3 and FAPbBr3 NCs (MA, methylammonium; FA, formamidinium).