Publication date: 15th July 2022
Self-assembly of colloidal nanocrystals into long-range-ordered structures through a bottom-up approach is highly promising for creating metamaterials with programmable functionalities arising from various synergistic effects and emergent interactions between neighboring NCs. Both single-component and binary superlattices reported so far were mainly composed of spherical NCs limiting the variety of obtained structures to the ones isostructural with the known atomic lattices [1]. A far greater structural diversity is accessible via assembling NCs of different shapes, e.g. nanoplates, nanorods, nanocubes, or nanodiscs. Notably, lead halide perovskite nanocrystals are characterized by remarkable optical properties together with being synthetically available as sharp, monodisperse cubes with tunable edge length making them attractive candidates as building blocks for self-assembly. A new step toward unique positional and orientational order would be to combine nanocubes with NCs of anisotropic shape. To this end, we have chosen LaF3 and NaGdF4 NCs as a second component for SLs due to their synthetic accessibility and well-defined, ensemble-uniform morphology.
Co-assembly of CsPbBr3 nanocubes with disc-shaped LaF3 NCs (9.2-28.4 nm in diameter) leads to the formation of six columnar structures with AB, AB2, AB4, and AB6 stoichiometry as well as to noncolumnar lamellar and ReO3-type SLs by employing larger CsPbBr3 NCs [2]. The latter two SLs proved to exhibit characteristic features of the collective ultrafast emission – superfluorescence. Intending to broaden the variety of building blocks for NC SLs, we utilized organic-inorganic perovskite NCs, namely FAPbBr3 NCs, for the formation of binary SLs with spherical NaGdF4 NCs (b-ABO3-, AlB2-, AB2-, NaCl-type structures) and LaF3 nanodiscs (columnar AB-type and lamellar SLs). Combining larger and thicker NaGdF4 nanodiscs (18.5 nm in thickness) with CsPbBr3 NCs resulted in the orthorhombic SL resembling the CaC2 structure. For this and ABO3-type structures, we expanded the scope of the available dimensionalities of SLs by employing microemulsion-templated self-assembly which allowed for the formation of three-dimensional binary supraparticles [3].