DOI: https://doi.org/10.29363/nanoge.DEPERO.2023.024
Publication date: 14th September 2023
In this talk, I will present a consistent modelling framework for perovskite solar cells that takes into account the impact of mobile ionic defects on photovoltaic performance. I will explain common perovskite device characteristics through drift-diffusion simulations and reduced-order modelling of both time- and frequency-domain measurements. We use the open-source ‘IonMonger’ code released in 2019 [1] to simulate continuum-level models which describe the effects of material properties and internal mechanisms on the behaviour of a complete device. Version 2.0 [2] can simulate a 100-point electrochemical impedance spectrum in less than a minute on a desktop computer and reproduce the distinctive ionic-electronic features exhibited by perovskite solar cells. Meanwhile, reduced-order models enable the identification of key performance metrics. I will present a simplified description of the steady-state current [3] and frequency response [4] which explains why the classical diode ideality factor is not a reliable indicator of recombination type. Instead, simulations show that we can use two factors (one electronic and one ionic) to reveal the location and type of recombination losses in a planar perovskite solar cell.