Proceedings of International Conference Asia-Pacific Hybrid and Organic Photovoltaics 2018 (AP-HOPV18)
Publication date: 27th October 2017
For a typical perovskite solar cell (PKSC), both the electron transport layers (ETLs) and hole transport materials (HTMs) play very important role in improving the device performance and long term stability. In this paper, we firstly improve the electron transport properties by modification of TiO2 ETL with Na species, and an enhanced PCE of 16.91% has been obtained with less hysteresis. Subsequently, inorganic CuI film prepared by a facile spray deposition method has been employed to replace the conventional spiro-OMeTAD as the HTM in perovskite solar cells. Due to the improved transport properties at the ETL/perovskite and perovskite/HTM interfaces, a maximum photovoltaic efficiency of 17.6% with reduced hysteresis has been achieved in the PKSC with both the Na-modified TiO2 ETL and 60 nm-thick CuI layer HTM. To our knowledge, the PCE achieved in this paper is one of the highest values ever reported for the PKSC devices with inorganic HTMs. More significantly, the PKSCs manifest an outstanding device stability, the PCE keeps constant after storage in the dark for 50 days, and it can retain approximately 92% of their initial efficiency after storage even for 90 days.