Proceedings of International Conference Asia-Pacific Hybrid and Organic Photovoltaics 2018 (AP-HOPV18)
DOI: https://doi.org/10.29363/nanoge.ap-hopv.2018.077
Publication date: 27th October 2017
A planetary emergency has arisen from the continued depletion of fossil fuels, producing green house warming and unprecedented environmental pollution. Future energy options for renewable and carbon-free sources will need to fill the terra-watt gap that will open up during the next few decades due to the growth of the world population. A promising development is the recent emergence of a new generation of low cost and highly efficient photovoltaic converters based on molecular sensitizers and perovskite pigments as light harvesters. Dye sensitized solar cells are meanwhile found applications as flexible light weight power supplies for portable electronics as well as electric power producing glass panels their market being presently in the multi-megawatt range. Perovskite solar cells (PSCs) [1] have directly evolved from DSCs. They have attracted enormous interest due to their low cost ease of preparation and ha certified solar to electric power conversion efficiency (PCE) exceeding already the performance polycrystalline silicon solar cells. Present efforts focus on scale up of the device size [2] and achieving operational stability [3]. The high photovoltage (Voc > 1.2 V) attained with these systems renders them very attractive for the generation of fuels from sunlight, e.g. by the splitting of water into hydrogen and oxygen [4] and the cleavage of CO2 into CO and 1/2 O2.
References:
[1] M. Grätzel, The light and shade of perovskite solar cells., Nature Materials 2014, 13, 838-842.
[2] X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel,
A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells,
Science, 353, 58-62 (2016)
[3] N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Grätzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%., Science, 358, 768-771 (2017)
[4] J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, Md.K. Nazeeruddin, N.-G. Park, S.D.Tilley, H.J. Fan, M. Grätzel. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth abundant catalysts. Science 2014, 345, 1593-1596.