Proceedings of International Conference Asia-Pacific Hybrid and Organic Photovoltaics 2018 (AP-HOPV18)
DOI: https://doi.org/10.29363/nanoge.ap-hopv.2018.035
Publication date: 27th October 2017
Abstract
We present a controlled, stepwise formation of methylammonium bismuth iodide (CH3NH3)3Bi2I9 perovskite films prepared via the vapor assisted solution process (VASP) by exposing BiI3 films to CH3NH3I (MAI) vapours for different reaction times, (CH3NH3)3Bi2I9 semiconductor films are obtained of which the optoelectronic properties can be fine tuned. Solar cells prepared using mesoporous TiO2 substrates yielded efficiencies upto 2% with good reproducibility. The good performance is attributed mainly to the homogeneous surface coverage, improved stoichiometry, metallic content, and optoelectronic properties of absorber material. Solar cells prepared using pure BiI3 films achieved power conversion efficiency of 0.34%. The non-encapsulated devices found to be stable for as long as > 60 days of time with a bare loss of 0.1% in efficiency. These results on (CH3NH3)3Bi2I9 show the benefit of VASP technique to optimize material stoichiometry, morphology, solar cell performance, and long-term durability.
Broader context: The rapid efficiency improvement of lead based perovskite photovoltaic. have competed with traditional photovoltaic materials such as silicon and CdTe in terms of efficiency, However, toxicity, and long-term stability remains a hurdle for their commercialization. It is a challenging task to remove toxic lead from solar cells. In this direction, we report here pure bismuth iodide based solar cells yielding 0.34% efficiency. A two-step VASP method was used to systematically react BiI3 with MAI vapours. The solar cells were prepared at different reaction time in order to find the optimized composition, reduce metallic states for solar cells and obtained power conversion efficiency of 2%, which is highest efficiency reported so far for the MAI_BiI3 type of cells. Also, the devices made shown > 60 days long term stability. The finding of this work and the methodology applied could be extended to improve the performance and stability of other lead free (e.g. antimony and tin) based perovskite solar cells by facile fabrication means.