Proceedings of International Conference Asia-Pacific Hybrid and Organic Photovoltaics 2018 (AP-HOPV18)
DOI: https://doi.org/10.29363/nanoge.ap-hopv.2018.003
Publication date: 27th October 2017
In this work we report the synthesis, purification, morphological and photovoltaic evaluation of a novel fully-conjugated donor/acceptor block copolymer system based on the P3HT-b-PFTBT scaffold. The incorporation of hydrophilic tetraethylene glycol side-chains into the PFTBT acceptor block generates an amphiphilic species whose properties provide demonstrable benefits over traditional systems. This design strategy facilitates isolation of the block copolymer from homopolymer impurities present in the reaction mixture, and we show that this purification leads to better-defined morphologies. The chemical disparity introduced between donor and acceptor blocks causes spontaneous microphase separation into well-defined domains, which we demonstrate with a combination of spectroscopy, microscopy, and X-ray scattering. The morphological advantages of this system are significant.
[1] Mitchell, V. D., Wong, W. W. H., Thelakkat, M., and Jones, D. J., "The synthesis and purification of amphiphilic conjugated donor–acceptor block copolymers," Polymer Journal, Vol. 49(1), 155-161 (2016). DOI: 10.1038/pj.2016.97
[2] Mitchell, V. D.; Gann, E.; Huettner, S.; Singh, C. R.; Subbiah, J.; Thomsen, L.; McNeill, C. R.; Thelakkat, M.; Jones, D. J., "Morphological and Device Evaluation of an Amphiphilic Block Copolymer for Organic Photovoltaic Applications" Macromolecules 2017, 50 (13), 4942-4951. DOI: 10.1021/acs.macromol.7b00377