Proceedings of International Conference on Perovskite Thin Film Photovoltaics, Photonics and Optoelectronics (ABXPV18PEROPTO)
DOI: https://doi.org/10.29363/nanoge.abxpvperopto.2018.053
Publication date: 11th December 2017
State-of-the-art light emitting diodes (LEDs) are made from high-purity alloys of III-V semiconductors or small molecules, but high fabrication cost and conplicated synthetic process have limited their widespread use for large area solid-state lighting applications. Here we report efficient and stable LEDs processed from solution with tunable color enabled by using phase-pure two-dimensional (2D) Ruddlesden-Popper (RP) layered perovskites with a formula (CH3(CH2)3NH3)2(CH3NH3)n-1PbnI3n+1 (n=3-5 in this report). By using controlled vertically oriented of crystal in the thin-films that facilitate efficient charge injection and transport, we obtain efficient electroluminescence with a radiance of 35 W Sr-1 cm-2 at 744 nm with an ultra-low turn-on voltage of 1V. Finally, operational stability tests suggest that phase purity is strongly correlated to stability. Phase-pure 2D perovskites exhibit >14 hours of stable operation at peak operating conditions with no droop at current-densities of several Amperes/cm2 in comparison to mixtures of 2D/3D mixture or 3D perovskites, which degrade within minutes.