The nanoGe Conference on Bioelectronic Interfaces: Materials, Devices and Applications (CYBIOEL24), took place from 22nd to 25th of October 2024 in Limassol (Cyprus).
Bioelectronic interfaces target sensing or modulation of biological processes for basic research and mainly biomedical applications. However new directions are also emerging such as applications in environment, agriculture and biotechnology. The main focus of the symposium was the interface of bioelectronic technologies with biological systems, understanding how to tune active materials properties and device engineering to enable seamless integration and high performance on signal transduction. The symposium covered widely explored applications such as multimodal neural interface, biosensors for healthcare, in-vitro models, and at the same time less explored systems such as biohybrid interfaces, plant bioelectronics and bioelectrochemical systems.
Conference Content
Within this multi-disciplinary symposium, we aimed to bridge the gap between biology, engineering, and materials science to promote a holistic overview on bioelectronic systems for basic research, therapeutics, diagnostics and emerging applications. We aimed to bring together researchers with diverse expertise across various fields, and from around the world, to share their knowledge on bioelectronic interfaces.
At nanoGe we believe in the power of knowledge, innovation, and collaboration to shape the future of science. Our mission is to provide a transformative experience designed to unlock the full potential of scientists and researchers, not only during the conference but also beyond the event in order to drive impactful change in their lives.
How can a nanoGe Balance conference help you?
We offer a natural environment, surrounded by like-minded individuals, where you can take a pause and reset. Our conference offers activities that will boost your spirit and stimulate your innovative thinking by actively engaging as a team and igniting your creativity. A chance to team up with experts in your field, forging new collaborations and finding fresh perspectives and new high-impact approaches that will go beyond the conference.
Do you want to know the activities that will empower and boost your creativity in a natural environment?
Magnus Berggren received his MSc in Physics in 1991 and graduated as PhD (Thesis: Organic Light Emitting Diodes) in Applied Physics in 1996, both degrees from Linköping University. He then joined Bell Laboratories in Murray Hill, NJ in the USA, for a one-year post doc period focusing on the development of organic lasers and novel optical resonator structures.
In 1997 he teamed up with Opticom ASA, from Norway, and former colleagues of Linköping University to establish the company Thin Film Electronics AB (ThinFilm). From 1997 to 1999 he served Thin Film as its founding managing director and initiated the development of printed electronic memories based on ferroelectric polymers.
After this, he returned to Linköping University and also to a part time manager at RISE Acreo. In 1999, he initiated the research and development of paper electronics, in part supported by several paper- and packaging companies. Since 2002, he is the professor in Organic Electronics at Linköping University and the director of the Laboratory of Organic Electronics, today including close to 90 researchers.
Magnus Berggren is one of the pioneers of the Organic Bioelectronics and Electronic Plants research areas and currently he is the acting director of the Strategic Research Area (SFO) of Advanced Functional Materials (AFM) at LiU. In 2012 Magnus Berggren was elected member of the Royal Swedish Academy of Sciences and in 2014 he received the Marcus Wallenberg Price. He is also the co-founder of 7 companies: ThinFilm, Invisense, DP Patterning, Consensum Prodcution, OBOE IPR, OBOE Players and Ligna Energy.
Ardemis Boghossian
Ecole Polytechnique Federale de Lausanne (EPFL), CH
Ardemis Boghossian
Ecole Polytechnique Federale de Lausanne (EPFL), CH
Annalisa Bonfiglio graduated in Physics in 1991 at the University of Genova, Italy and got the PhD in Bioengineering in 1996 at the Politechnical School in Milan.
She is currently Full Professor of Electronic Bioengineering at the Scuola Universitaria Superiore IUSS in Pavia, Italy.
She authored more than 200 papers on international journals, conference proceedings, book chapters. She also holds 12 patents. Her research activity is focussed on innovative materials (in particular organic semiconductors) and devices for wearable electronics and biomonitoring.
From 1996 to 2023 she was with the University of Cagliari where, from 2015 to 2017 she served as Vice-Rector for Innovation and Territorial Strategies. From 2014 to 2017 she was in the Board of Directors of CRS4 (Center for Advanced Studies, Research and Development in Sardinia). From 2017 to 2020, she served as President at CRS4.
Iain McCulloch holds positions as Professor of Chemical Science within the Division of Physical Sciences and Engineering of KAUST, and a Chair in Polymer Materials within the Chemistry Department at Imperial College. He is also a co-founder and director of Flexink Limited. He is co-inventor on over 60 patents and co-author on over 300 papers with a current h-index of 68. His papers have been cited over 19000 times, including two papers with over 1000 citations. He was cited in Thompson Reuters “Global Top 100 Materials Scientists, 2000-10, Ranked by Citation Impact” at number 35 globally and number 2 in the UK, and was listed on ISI Highly Cited Researchers List 2014, based on ESI Highly Cited Papers 2002-2012. He was awarded the 2009 Royal Society of Chemistry, Creativity in Industry Prize, the 2014 Royal Society of Chemistry Tilden Prize for Advances in Chemistry and a 2014 Royal Society Wolfson Merit Award.
Andreas Offenhäusser
Forschungszentrum Jülich, DE
Andreas Offenhäusser
Institute for Biological Information Processing - Bioelectronics
Róisín M. Owens is Professor of Bioelectronics at the Dept. of Chemical Engineering and Biotechnology in the University of Cambridge and a Fellow of Newnham College. She received her BA in Natural Sciences (Mod. Biochemistry) at Trinity College Dublin, and her PhD in Biochemistry and Molecular Biology at Southampton University. She carried out two postdoc fellowships at Cornell University, on host-pathogen interactions of Mycobacterium tuberculosis in the dept. of Microbiology and Immunology with Prof. David Russell, and on rhinovirus therapeutics in the dept. of Biomedical Engineering with Prof. Moonsoo Jin. From 2009-2017 she was a group leader in the dept. of bioelectronics at Ecole des Mines de St. Etienne, on the microelectronics campus in Provence. Her current research centers on application of organic electronic materials for monitoring biological systems in vitro, with a specific interest in enhancing the biological complexity and adapting the electronics to be fit for purpose. She has received several awards including the European Research Council starting (2011), proof of concept grant (2014) and consolidator (2016) grants, a Marie Curie fellowship, and an EMBO fellowship. She currently serves as co-I and co-director for the EPSRC CDT in Sensor Technologies, renewed in 2019. She is a 2019 laureate of the Suffrage Science award. From 2014-2020, she was principle editor for biomaterials for MRS communications (Cambridge University Press), and she serves on the advisory board of Advanced BioSystems and Journal of Applied Polymer Science (Wiley). In 2020 she became Scientific Editor for Materials Horizons (RSC). She is author of 100+ publications and 2 patents and her work has been cited more than 6000 times.
Jonathan Rivnay
Northwestern University, Evanston, Illinois, United States, US
Jonathan Rivnay
Biomedical Engineering
Northwestern University, Evanston, Illinois, United States, US
Eleni Stavrinidou is an Associate Professor and leader of the Electronic Plants group at Linköping University. She received a PhD in Microelectronics from EMSE (France) in 2014. She then did her postdoctoral training at Linköping University (Sweden) during which she was awarded a Marie Curie fellowship. In 2017 Eleni Stavrinidou became Assistant Professor in Organic Electronics at Linköping University and established the Electronic Plants group. She received several grants including a Swedish Research Council Starting Grant and she is the Coordinator of the HyPhOE-FET-OPEN project. In 2019 she received the L’ORÉAL-UNESCO For Women in Science prize in Sweden. In 2020 she became Associate Professor and Docent in Applied Physics. The same year she was awarded the Future Research Leaders grant of the Swedish Foundation for Strategic Research. Her research interests focus on organic electronics for plant monitoring and optimization, energy applications and bio-hybrid systems.
Achilleas Savva
Dept. of Microelectronics, Faculty of Electrical Engineering
Delft University of Technology, NL
Achilleas Savva
Dept. of Microelectronics, Faculty of Electrical Engineering
Achilleas Savva is an Assistant Professor in the Bioelectronics group at Delft University of Technology, in The Netherlands. He received his B.Sc. and M.Sc. in chemical engineering from Aristotle University of Thessaloniki in Greece, in 2010. He then obtained his PhD in Materials Science and Engineering from Cyprus University of Technology in 2014. His PhD research was focused on organic optoelectronics for renewable energy. In 2017 he joined the group of Professor Sahika Inal in KAUST, Saudi Arabia, as a postdoc, and expanded his research on organic bioelectronics. In 2019, he joined the group of Professor Róisín Owens at the University of Cambridge where he secured the Marie Skłodowska-Curie Postdoctoral Fellowship. He developed several novel organic bioelectronic devices such as biosensors, light sensitive devices for photo-stimulation of neurons, 3D in vitro human stem cell models, among others. Achilleas was born in Limassol, Cyprus.
Technical onsite organizer
Andrea A.
Conference Manager
Prizes
🏅 Best Oral Prize valued at 200€ from Fundació Scito - Eleonora Martinelli
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info