The author was graduated from Osaka University in 1978 and received Ph.D from Osaka University in 1983. He joined R&D Center in Toshiba from 1978 to 2000, during which the author was engaged in development of ULSI lithography, solar cells direct methanol fuel cells, and polysilane. He joined polysilane research in Robert West group of Wisconsin University (US) from 1988 to 1990. He was a professor of Kyushu Institute of Technology (National Institute) since 2001. From 2019, the author is a professor in The University of Electro-Communications in Japan. His research interest is printable solar cells.
Juan Bisquert (pHD Universitat de València, 1991) is a Professor of applied physics at Universitat Jaume I de Castelló, Spain. He is the director of the Institute of Advanced Materials at UJI. He authored 360 peer reviewed papers, and a series of books including . Physics of Solar Cells: Perovskites, Organics, and Photovoltaics Fundamentals (CRC Press). His h-index 95, and is currently a Senior Editor of the Journal of Physical Chemistry Letters. He conducts experimental and theoretical research on materials and devices for production and storage of clean energies. His main topics of interest are materials and processes in perovskite solar cells and solar fuel production. He has developed the application of measurement techniques and physical modeling of nanostructured energy devices, that relate the device operation with the elementary steps that take place at the nanoscale dimension: charge transfer, carrier transport, chemical reaction, etc., especially in the field of impedance spectroscopy, as well as general device models. He has been distinguished in the 2014-2019 list of ISI Highly Cited Researchers.
Hiroshi Segawa (born 1961) is a professor at Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Japan. He obtained his Ph.D. in Molecular Engineering from Graduate School of Engineering of Kyoto University in 1989 and was Research Associate (1989-1995) at the division of Molecular Engineering of Graduate School of Engineering at Kyoto University. He held an additional researcher post (1994-1997) of PRESTO project of Japan Science and Technology Agency (JST). In 1995 he joined the University of Tokyo as Associate Professor of Department of Chemistry at Graduate School of Arts and Sciences. From 1997 he has also been in charge of Department of Applied Chemistry at Graduate School of Engineering. In 2006 Professor Segawa joined the three faculties of RCAST, Department of Chemistry at Graduate School of Arts and Sciences, and Department of Applied Chemistry at Graduate School of Engineering at the University of Tokyo. In 2010, he was appointed director of Academic-Industrial Joint Laboratory for Renewable Energy of RCAST. Currently he is one of core researcher of FIRST Program (Funding Program for World-Leading Innovative R&D on Science and Technology) which is selected top 30 researchers with highest potential from various science fields by Cabinet office, Government of Japan. He is one of the experts in the field of electrochemical solar cells. His research group are focused on construction of photo-energy conversion system. Currently the object is the efficiency enhancement of the meso-structured solar cells. Additionally, he is developing an energy-storable dye-sensitized solar cell.
Professor of Physical Chemistry at the Ecole Polytechnique Fédérale de Lausanne (EPFL) Michael Graetzel, PhD, directs there the Laboratory of Photonics and Interfaces. He pioneered research on energy and electron transfer reactions in mesoscopic systems and their use to generate electricity and fuels from sunlight. He invented mesoscopic injection solar cells, one key embodiment of which is the dye-sensitized solar cell (DSC). DSCs are meanwhile commercially produced at the multi-MW-scale and created a number of new applications in particular as lightweight power supplies for portable electronic devices and in photovoltaic glazings. They engendered the field of perovskite solar cells (PSCs) that turned our to be the most exciting break-through in the recent history of photovoltaics. He received a number of prestigious awards, of which the most recent ones include the RusNANO Prize, the Zewail Prize in Molecular Science, the Global Energy Prize, the Millennium Technology Grand Prize, the Samson Prime Minister’s Prize for Innovation in Alternative Fuels, the Marcel Benoist Prize, the King Faisal International Science Prize, the Einstein World Award of Science and the Balzan Prize. He is a Fellow of several learned societies and holds eleven honorary doctor’s degrees from European and Asian Universities. According to the ISI-Web of Science, his over 1500 publications have received some 230’000 citations with an h-factor of 219 demonstrating the strong impact of his scientific work.
Songyuan Dai is the Professor and Dean of Renewable Energy School, North China Electric Power University. He received his BS in Department of Physics from Anhui Normal University in 1987. And got his MS, and PhD degrees in Institute of Plasma Physics Chinese Academy of Sciences, in 1991, and 2001, respectively. He works as a chief scientist of National Key Basic Research Project (973 project) during 2006-2010,2011-2015, and 2016~2020. He published over 200 peer-reviewed papers regarding dye-sensitized solar cells, quantum-dot solar cell and perovskite solar cell
Eric Wei-Guang Diau received his Ph.D. in Physical Chemistry from National Tsing Hua University, Taiwan, in 1991. Before joining at Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, as a faculty member since 2001, he worked as a postdoctoral fellow at Emory University (1993-1995), University of Queensland (1995-1996), Stanford Research Institute, International (1996-1997) and California Institute of Technology (1997-2001). He is interested on studying relaxation kinetics in condensed matters, in particular interfacial electron transfer and energy transfer dynamics in many solar energy conversion systems. His current research is focusing on the developments of novel functional materials for next-generation solar cells, including perovskite solar cells (PSC). He received “Outstanding Research Award” from MRS Spring Meeting & Exhibit on April, 2014 and “Sun Yat Sen Academic Award” from Sun Yat Sen Academic and Cultural Foundation on October, 2014. He has published over 180 peer-reviewed papers with H-index 51. He has been granted over 14 patents. He is currently Distinguished Professor at Department of Applied Chemistry and Science of Molecular Science, National Chiao Tung University.
Professor Alex Jen obtained his Ph. D. degree from the Department of Chemistry, University of Pennsylvania in 1984. He is currently the Boeing-Johnson Chair Professor and Department Chair of the Materials Science & Engineering at the University of Washington, Seattle. He is also serving as the Chief Scientist of the Clean Energy Institute established by the governor of the Washington State. Dr. Jen’s research interest is focused on utilizing molecular, polymeric and biomacromolecular self-assembly to create ordered arrangement of organic and inorganic functional materials for photonics, opto-electronics, nanomedicine, and nanotechnology. He has co-authored more than 500 publications, given over 400 invited presentations, and has more than 20,000 citations and a H-index of 72. He is also a co-inventor for more than 50 patents and invention disclosures. For his pioneering contributions in organic photonics and electronics, he was elected as Fellow by several professional societies including the MRS Fellow of the Materials Research Society, ACS Fellow of the American Chemical Society, the AAAS Fellow by American Association of the Advancement of Science, the OSA Fellow of Optical Society of America, SPIE Fellow of the International Society of Optical Engineering, and PMSE Fellow of the American Chemical Society’s Polymeric Materials Science & Engineering Division. He was also elected as an Academician of the Washington State Academy of Sciences.
Yongfang Li is a professor in Institute of Chemistry, Chinese Academy of Sciences (ICCAS) and in Soochow University. He received his Ph. D. degree in department of Chemistry from Fudan University in 1986, and did his postdoctoral research at ICCAS from 1986 to 1988. He became a staff in 1988 and promoted to professor in 1993 in ICCAS, and elected as member of Chinese Academy of Sciences in 2013. He did his visiting research in Institute for Molecular Science, Japan from 1988 to 1991 and in University of California at Santa Barbara from 1997 to 1998. His present research interests are photovoltaic materials and devices for polymer solar cells. He has published more than 600 papers and the published papers were cited by others for more than 28000 times with h-index of 86.
Subodh Mhaisalkar is the Tan Chin Tuan Centennial Professor in the School of Materials Science & Engineering at the Nanyang Technological University (NTU), Singapore. Subodh is also the Executive Director of the Energy Research Institute @ NTU (ERI@N), a pan-University multidisciplinary research institute for innovative energy solutions. Prior to joining NTU in 2001, Subodh has over 10 years of research and engineering experience in the microelectronics industry and his areas of expertise and research interests includes semiconductor technology, perovskite solar cells, printed electronics, and energy storage. Subodh received his Bachelors’ degree from IIT-Bombay and his MS/Ph.D. degrees from The Ohio State University.
Tsutomu (Tom) Miyasaka received his Doctor of Engineering from The University of Tokyo in 1981. He joined Fuji Photo Film, Co., conducting R&Ds on high sensitivity photographic materials, lithium-ion secondary batteries, and design of an artificial photoreceptor, all of which relate to electrochemistry and photochemistry. In 2001, he moved to Toin University of Yokohama (TUY), Japan, as professor in Graduate School of Engineering to continue photoelectrochemistry. In 2006 to 2009 he was the dean of the Graduate School. In 2004 he has established a TUY-based company, Peccell Technologies, serving as CEO. In 2005 to 2010 he served as a guest professor at The University of Tokyo.
His research has been focused to light to electric energy conversion involving photochemical processes by enhancing rectified charge transfer at photo-functional interfaces of semiconductor electrodes. He has contributed to the design of low-temperature solution-printing process for fabrication of dye-sensitized solar cells and solid-state hybrid photovoltaic (PV) cells. Since the discovery of the organic inorganic hybrid perovskite as PV material in 2006 and fabrication of high efficiency PV device in 2012, his research has moved to R&Ds of the lead halide perovskite PV device. He has promoted the research field of perovskite photovoltaics by organizing international conferences and by publishing many papers on enhancement of PV efficiency and durability, overall citation number of which is reaching more than 5,000 times. In 2009 he was awarded a Ministry of Science & Education prize on his achievements of green sustainable solar cell technology. In 2017 he received Chemical Society of Japan (CSJ) Award. He is presently directing national research projects funded by Japan Science and Technology Agency (JST) and Japan Aerospace Exploration Agency (JAXA).
Hideo Ohkita is a Professor in the Department of Polymer Chemistry at Kyoto University. He obtained a Doctoral degree in 1997 at Kyoto University. He became an Assistant Professor in 1997, was promoted to Associate Professor in 2006, and to Professor of Department of Polymer Chemistry at Kyoto University in 2016. He concurrently worked as an academic visitor with Professor Durrant at Imperial College London from 2005 to 2006, and as a researcher in the Precursory Research for Embryonic Science and Technology (PRESTO) program “Photoenergy Conversion Systems and Materials for the Next Generation Solar Cells”, Japan Science and Technology Agency (JST), from 2009 to 2015. His research interests include studying photophysics and photochemistry in polymer systems. His current research focuses on spectroscopic approach to polymer solar cells.
Nam-Gyu Park is professor and SKKU-Fellow at School of Chemical Engineering and adjunct professor at Department of Energy Science, Sungkyunkwan University. He got Ph.D. in Inorganic Solid State Chemistry from Seoul National University in 1995. He worked at ICMCB-CNRS, France, from 1996 to 1997 and at National Renewable Energy Laboratory, USA, from 1997 to 1999 as postdoctoral researchers. He worked as Director of Solar Cell Research Center at Korea Institute of Science and Technology from 2005 to 2009 and as a principal scientist at Electronics and Telecommunications Research Institute from 2000 to 2005 before joining Sungkyunkwan University in 2009. He has been doing researches on high efficiency mesoscopic solar cells including perovskite solar cell and dye-sensitized solar cell since 1997. He is pioneer in solid state perovskite solar cell, which was first developed in 2012. He received awards, including Scientist Award of the Month (MEST, Korea), KyungHyang Electricity and Energy Award (KEPCO, Korea), KIST Award of the Year (KIST, Korea) and Dupont Science and Technology Award (Dupont Korea), SKKU fellowship, and MRS Outstanding Research Award (MRS, Boston) and WCPEC Paper Award (Kyoto, Japan). He published over 230 scientific papers, including Science, Nature Materials, Nature Nanotechnology, Nature Energy and Nature Communications, 80 patent applications and 8 book chapters. He received H-index of 67 as of May, 2017.
Prof. Yang Yang The Carol and Lawrence E. Tannas Jr. Endowed Chair in Engineering Department of Materials Science and Engineering, UCLA PhD: Physics and Applied Physics, U-Mass.,Lowell, 1992; Advisors: Prof. Sukant Tripathy (deceased) and Jayant Kumar MS.: Physics and Applied Physics, U-Mass.,Lowell, 1988 Advisor: Prof. Y.Y. Teng (deceased) BS.: Physics, National Cheng-Kung University, Taiwan, 1982 Prof. Yang's major researches are in the solar energy and highly efficient electronic devices. He has more than 230 refereed papers (including book chapters); 43 patents (filed or issued), and 120 invited talks. His H-Index is ~82 as January 2014. His major contribution in the organic solar energy is in the understanding of polymer morphology and the influence on device performance; the invention of inverted organic solar cell, and inverted tandem solar cell; and transparent solar cells. In the past few years, Yang has created several record-high efficiencies in polymeric solar cells. Other researches he participated are: organic memory devices, solution processible graphene, and solution processible CIGS/CZTS solar cells. He has a group of 25 student and postdocs. Since 2001, he has produced 28 PhD degrees, 10 MS degrees; among them, 9 of his students have become faculty. His technology has enabled the formation of 5 startups. Honors and Awards: The Carol and Lawrence E. Tannas Jr. Endowed Chair in Engineering, July 2011 Director, Nano Renewable Energy Center of California NanoSystem Inst., UCLA. (2007-now) Top Hot Researcher in 2010, Science Watch (published by Thomas Reuters) Highest cited Paper in 2010, Advanced Functional Materials Highest cited Paper in 2008-2010, Journal of American Chemical Society (JACS) IEEE Photovoltaic Field Expert, 2009. Semiconductor Research Association Invention Award 2008. NSF Career Award: 1998; 3M Young Investigator Award, 1998. Professional EXPERIENCE UCLA (1997-present): The Carol and Lawrence E. Tannas Jr. Endowed Chair in Engineering, July 2011 Nano Renewable Energy Center, California Nano-System Institute, Director, (2007-present). Materials Science and Engineering, Professor (02-now), Asso. Prof. (98-02), Asst. Prof. (97-98) EFL Tech. (Brisbane, Australia), Chair of Scientific Advisory Board (2012-present) EFL Tech is a startup to commercialize the transparent solar cell for portable electronics. Solarmer Energy Inc., Chief Scientist (2006-present) Solarmer Energy Inc. is a startup co-funded by Yang, their business is in the commercialization of polymer solar cells. 1992-1996, UNIAX Corporation (now Du Pont Display) in Santa Barbara Postdoc (92 -93; advisor: Prof. Alan Heeger, Nobel Laureate, 2000) and Staff Scientist (93-96) Participated in research on polymer LEDs, transistors, and conducting polymers. 1991-1992, University of California-Riverside, Chemistry Department Postdoc (supervisor: Prof. B. Kohler (deceased)) Laser spectroscopy and hole-burning experiments. Prof. Yang's Selective Publications His H-index is ~82 as of January 2014 (1) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Gang Li, Vishal Shrotriya, Jinsong Huang, Yan Yao, Tom Moriarty, Keith Emery and Yang Yang, Nature Materials Volume: 4 Issue: 11, 864-868, 2005 Times Cited: 2002 (2) Polymer solar cells with enhanced open-circuit voltage and efficiency, Hsiang-Yu Chen, Jianhui Hou, Shaoqing Zhang, Yongye Liang, Guanwen Yang, Yang Yang, Luping Yu, Yue Wu and Gang Li., Nature Photonics, 3, 11, Pages: 649-653, 2009 Times Cited: 427 (3) Programmable polymer thin film and non-volatile memory device, Jianyong Ouyang, Chih-Wei Chu, Charles R. Szmanda, Liping Ma, Yang Yang, Nature Materials, 3, 12, 918-922, 2004 Times Cited: 322 (4) Polyaniline nanofiber/gold nanoparticle nonvolatile memory, Ricky Jia-Hung Tseng, Jiaxing Huang, Jianyong Ouyang, Richard B. Kaner, and Yang Yang, Nano Letters, 5, 6, 1077-1080, 2005 Times Cited: 319 (5) Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole, Jianhui Hou, Hsiang-Yu Chen, Shaoqing Zhang, Gang Li, and Yang Yang., Journal of the American Chemical Society, 130, 48, 16144-16145, 2008 Times Cited: 284 (6) High-throughput solution processing of large-scale graphene, Vincent C. Tung, Matthew J. Allen, Yang Yang and Richard B. Kaner., Nature Nanotechnology, 4, 1, 25-29, 2009 Times Cited: 254 (7) "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes, Gang Li, Yan Yao, Hoichang Yang, Vishal Shrotriya, Guanwen Yang, and Yang Yang, Advanced Functional Materials, 17, 10, 1636-1644, 2007, Times Cited: 254 (8) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene), Gang Li, Vishal Shrotriya, Yan Yao, and Yang Yang., Journal of Applied Physics, 98, 4, 043704(5 pages), 2005 , Times Cited: 229 (9) Recent Progress in Polymer Solar Cells: Manipulation of Polymer: Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells, Li-Min Chen, Ziruo Hong, Gang Li, and Yang Yang, Advanced Materials ,21, 14, 1434-1449, : 2009, Times Cited: 196 (10) Accurate measurement and characterization of organic solar cells, Vishal Shrotriya, Gang Li, Yan Yao, Tom Moriarty, Keith Emery, and Yang Yang., Advanced Functional Materials, 16, 15, 2016-2023, 2006 , Times Cited: 181 (11) Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors; Tung, VC; Chen, LM; Allen, MJ; Kaner, R., and Yang, Y., Nano Letters, 9 (5), 1949-1955 (2009); Times Cited: 114 (12) Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells; Hou, JH; Chen, HY; Zhang, SQ; Yang, Y.et al; JACS, 131(43), 15586- 629 (2009); Times Cited: 136 (13) Effect of solvent mixture on the nanoscale phase separation in polymer solar cells; Yao, Y; Hou, JH; Xu, Z; Li, G., Yang, Y.; Adv. Func. Mat., 18, 1783-1789 (2008). Times Cited: 106 (14) Manipulating regioregular poly(3-hexylthiophene): [6,6]-phenyl-C-61-butyric acid methyl ester blends - route towards high efficiency polymer solar cells; Li, G; Shrotriya, V; Yao, Y; Huang, J., Yang, Y.; Journal of Materials Chemistry, 17 (30), 3126-3140 (2007), Times Cited: 120 (15) Patterning organic single-crystal transistor arrays, A. L. Briseno, S. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, Z. Bao; Nature, 444, 913, (2006). Times Cited: 272 (16) Digital memory device based on tobacco mosaic virus conjugated with nanoparticles; Tseng, RJ; Tsai, CL; Ma, LP; Ouyang, J., Ozkan, C.S., Yang, Y.; Nature Nanotech, 1, 72, (2006) Times Cited: 145 (17) Efficient inverted polymer solar cells; Li, G; Chu, CW; Shrotriya, V; Huang, J., and Yang, Y. Appl. Phys. Lett., 88, Pages: 253503-253505 (2006), Times Cited: 85 (18) Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application; Shi, CJ; Yao, Y; Yang, Y; Pei, Q.; JACS, 128, 27, p. 8980-8986 (2006); Times Cited: 137 (19) Electrical switching and bistability in organic/polymeric thin films and memory devices, Yang, Y; Ouyang, J; Ma, LP; et al.; Adv. Func. Mat. 16, 1001-1014 (2006). Times Cited: 184 (20) Achieving high-efficiency polymer white-light-emitting devices; Huang, JS; Li, G; Wu, E; Yang, Y.Adv. Mat. 18, 114-117, (2006). Times Cited: 163 (21) Transition metal oxides as the buffer layer for polymer photovoltaic cells; Shrotriya, V; Li, G; Yao, Y; Yang, Y.; Applied Physics Letters: 88(7), Pages: 073508-510 (2006); Times Cited: 132 (22) High-performance organic thin-film transistors with metal oxide/metal bilayer electrode; Chu, C.W., Li, S-H., Chen, C-W., Shrotriya, V., & Yang, Y., Appl. Phys. Lett., 87,193508 (2005) Times Cited: 100 (23) Investigation of annealing effects and film thickness dependence of polymer solar cells based on P3HT; Li, G; Shrotriya, V; Yao, Y; & Yang, Y., JAP 98, 043704, (2005). Times Cited: 229 (24) Organic donor-acceptor system exhibiting electrical bistability for use in memory devices; Chu, CW; Ouyang, J; Tseng, HH; Yang, Y.; Adv. Mat. 17 (11) p. 1440 (2005) Times Cited: 140 (25) Nonvolatile electrical bistability of organic/metal-nanocluster/organic system, Ma, LP; Pyo, S; Ouyang, J; Yang, Y., Appl. Phys. Lett. 82, 1419-21, (2003). Times Cited: 213 (26) High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex, Chen, FC; Yang, Y; Thompson, ME; Appl. Phys. Lett., 80, 2308 (2002). Times Cited: 155 (27) Organic electrical bistable devices and rewritable memory cells, Ma, LP; Liu, J; Yang, Y; Applied Physics Letters, 80, 16, p. 2997-2999 (2002). Times Cited: 260 (28) Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices, Liu, J; Shi, YJ; Yang, Y, Adv. Func. Mat., 11 (6), p. 420-424, (2001), Times Cited: 150 (29) Device performance and polymer morphology in polymer light emitting diodes: The control of device electrical properties and metal/polymer contact, Liu, J; Shi, YJ; Ma, LP; Yang, Y J. Appl. Phys., 88, 605, (2000). Times Cited: 95 (30) Device performance and polymer morphology in polymer light emitting diodes: : the control of thin film morphology and device quantum efficiency;; Shi, Y; Liu, J; Yang, Y; J. Appl. Phys., 87, 4254 (2000). Times Cited: 249 (31) Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo, Bharathan, J; Yang, Y, Appl. Phys. Lett., 72, 2660, (1998). Times Cited: 255 (Citation number is from: www.researchid.com)
Dr. Hongwei Han is Professor at Huazhong University of Science and Technology (HUST) / Wuhan National Laboratory for Optoelectronics (WNLO), and Distinguished Professor of ‘ChangJiang Scholars Program’. He obtained his bachelor degree from the College of Chemistry and Molecular Science in 2000 and his doctor degree from the School of Physics and Technology in 2005 at Wuhan University. And then, Dr. Han continued his research work at Monash University of Australia as Postdoc. After that he joined HUST and WNLO in 2008 and began to establish his group of Printable Mesoscopic Photovoltaics & Optoelectronics. Since 2000, Dr. Han has worked on the fully printable mesoscopic solar cells. The characteristic of such device is to print nanocrystalline layer, spacer layer and counter electrode layer on a single conductive substrates layer-by-layer, and then sensitized with dye and filled with electrolyte (or filled with perovskite materials directly). In 2015 his group fabricated 7m2 fully printable mesoscopic perovskite solar module. His more than 60 peer-reviewed publications in Science、 Nature Chemistry、 Nature Communications、J. Am. Chem. Soc.、Energy Environ. Sci. et al. have been published and 15 Patents have been applied within past five years.
Dr. Liyuan Han is the managing researcher of Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS). He received his Ph.D. degree from the University of Osaka Prefecture in 1988. He worked at SHARP Corporation since 1993, and started on the research of dye-sensitized solar cells. He has renewed the world record efficiency of dye-sensitized solar cells (cell and module) for several times. On 2008, he moved to NIMS, and established a research on next generation solar cells. Recently, he moved to research perovskite solar cells and achieved the first certified efficiency of 15% with cell area larger than 1 cm2. He is an inventor in more than 100 patents and an author in ca 200 scientific publications such as Science, Nature Energy, Advanced Materials in the field of next generation solar cells. His current research interests involve fundamental research in perovskite solar cells, dye-sensitized solar cells, and organic solar cells.
Professor Meredith is the Sêr Cymru Research Chair in Sustainable Advanced Materials at Swansea University Department of Physics in the United Kingdom where he also leads the newly established Centre for Integrative Semiconductor Materials. He is an Honorary Professor at the University of Queensland in Australia, and formerly an Australian Research Council Discovery Outstanding Researcher Award Fellow. He was educated in the UK at Swansea, Heriot-Watt and Cambridge Universities, and also spent six years as a senior scientist at Proctor and Gamble. His current research involves the development of new high-tech materials for applications such as optoelectronics and bioelectronics. He has particular interests and expertise in next generation semiconductors, functional surface coatings, solar energy systems, sensing and photodetection. Professor Meredith has published >250 papers and 29 patents and is co-founder of several start-up companies including XeroCoat and Brisbane Materials Technology. He is the recipient of numerous awards including the Premier of Queensland’s Sustainability Award (2013), is a Fellow of the Learned Society of Wales, a Fellow of the Institute of Physics and is widely recognised for his contributions to innovation and the promotion of renewable energy. He has served on several advisory bodies and boards including the Queensland Renewable Energy Target Public Enquiry Expert Panel and the ARENA Solar R&D Program Technical Advisory Board. In 2020 he received an OBE for services to materials research and innovation and was also appointed to the EPSRC’s Strategic Advisory Network in 2021.
Prof. Yabing Qi is Unit Director of Energy Materials and Surface Sciences Unit at Okinawa Institute of Science and Technology Graduate University (https://groups.oist.jp/emssu). He received his B.S., M.Phil., and Ph.D. from Nanjing University, Hong Kong University of Science and Technology, and University of California Berkeley, respectively. Prof. Qi has published 70+ research articles (30+ articles on perovskite solar cells) and is the inventor for 11 patents/patent applications. His research interests include perovskite solar cells, surface/interface sciences, lithium-ion batteries, organic electronics, energy materials and devices.
Prof. Qing Shen received her Bachelor’s degree in physics from Nanjing University of China in 1987 and earned her Ph.D. degree from the University of Tokyo in 1995. In 1996, she joined the University of Electro-Communications, Japan and became a full professor in 2016. In 1997, she got the Young Scientist Award of the Japan Society of Applied Physics. In 2003, she got the Best Paper Award of the Japan Society of Thermophysical Properties and the Young Scientist Award of the Symposium on Ultrasonic Electronics of Japan. In 2014, she got the Excellent Women Scientist Award of the Japan Society of Applied Physics. She has published nearly 140 peer-reviewed journal papers and book chapters. Her current research interests focus on solution processed nano-materials and nanostructures, semiconductor quantum dot solar cells and perovskite solar cells, and especially the photoexcited carrier dynamics (hot carrier cooling, multiple exciton generation, charge transfer at the interface) in perovskite solar cells, quantum dot and dye sensitized solar cells, organic-inorganic hybrid solar cells.
The Genesis and Early Developments 2009 - 2014
by Juan Bisquert, Emilio Juárez-Pérez and Prashant V. Kamat
Published by Fundació Scito
An authoritative account of the beginnings and proliferation of perovskite solar cells.
Get onsite at the conference at 30% discount! (you can order the book when doing the registration in AP-HOPV18): Order here
Or buy directly from our shop: buy here
Prof. Hayase, Prof. Bisquert and Prof. Segawa welcome you to the 2nd Asia-Pacific Hybrid and Organic Photovoltaics (AP-HOPV18) to be held in Kitakyushu, Japan from January 28th to 30th of 2018.
Solar energy conversion by low-cost and efficient photovoltaic devices is a steadily increasing its contribution to the global demand for renewable energy. Hybrid and organic solar cells are highly promising power sources due to their significant progress in efficiency and processing technology. A paradigmatic example is Perovskite-based hybrid solar cells that have demonstrated very high performance, reaching the efficiency shown by silicon-based solar cells. In addition, These hybrid solar cells present fascinating opportunities for scientific research and technological development. The main topics of this conference are related to material preparation, modeling and fabrication of hybrid and organic photovoltaic cells, including dye-sensitized solar cells, organic thin film solar cells, quantum dot solar cells, and perovskite solar cells. Building upon the success of the previous AP-HOPV conference, Asia-Pacific International Conference on Hybrid and Organic Photovoltaics 2018 in Kitakyushu will provide an excellent opportunity for scientists and engineers worldwide to exchange information and discussions on the latest developments in photovoltaics.
- Perovskite solar cells
- Dye-sensitized solar cells
- Organic thin film solar cells
- Quantum dot solar cells
- The other hybrid solar cells
Social dinner will take place on 2018 January 29th at Rihga Royal Hotel Kokura.
It will be mandatory to book tickets in advanced.
More info [+]
Contact email: ap-hopv18@nanoge.org